
Machine Learning Bot for
Financial Market

Submitted by

Wirachapong Suwanphibun
Sivakorn Lerttripinyo

Krittapasa Boontaveekul

1

Background

- Historical data in financial market is always collected.
- Collected historical prices can be used to predict a future trend.
- Machine Learning maybe able to predict by learning from data.
- Training Model is only a part of machine learning development project.

2

Background: Problem

- Reliable data source
- Experiment data, such as models, hyperparameters, should be recorded
- Deploying models to the real-world application
- Changing a model version
- Underlying infrastructures to implement a system

3

Background

- Objective
- Design and implement a system going beyond the machine learning experiment.
- Conduct an experiment on a price prediction model

- Input
- Output
- Evaluation

4

Outline of this Presentation

- System
- Design
- Experiment
- Result and Discussion

- Model Development
- Design
- Experiment
- Result and Discussion

- Conclusion
- Assessment
- Next Steps

5

Design Requirement

- Steps for implementing ML project
- Data Extraction
- Data Analysis
- Data Preparation
- Model Training
- Model Evaluation
- Model Serving
- Model Monitoring

6

Design Requirement

- Applying MLOps: Use Maturity Model to evaluate
- No standardized model, but there are some proposals by Google and Microsoft
- Google Model: Level of Automation
- Microsoft Model: Technical Capability

- This project starts from Google’s MLOps Level 0
- All components are run manually.

7

Design Requirement

- Then, the system is improved to achieve most features from Microsoft’s
MLOps Level 2

- A data pipeline automatically gathers data
- Experiment results are tracked
- Both the training code and the resulting models are version-controlled
- Implementing models are heavily dependent on data scientist expertise
- Application code has unit tests
- Basic integration tests exist for the model

8

Design Requirement

- Required Components
- Source Code Repository
- Model Training Infrastructure
- Model Registry
- ML Metadata Stores
- Model Serving Component
- Model Monitoring Component
- Price Prediction Model: Be covered in the next section

- One or more features as an input
- A single value as an output

- Price itself
- Difference in price

9

Infrastructure Management

- AWS and DigitalOcean
- Free Tier for AWS
- Free 200 USD for DigitalOcean

- Infrastructure as Code (IaC) to manage infrastructures’ specification
- Terraform
- Backend on AWS S3 (State) and AWS DynamoDB (LockID)

- Locking Management
- State Management
- Secret

- Having additional infrastructures for managing the state is worthwhile, albeit troublesome.

10

11

terraform apply
-var-file="02-value.tfvars"

.tfvars is not stored in GitHub.

Terraform State File

12

13

14

Database Design

- Raw Data
- Data from BinanceAPI
- Relational DB

- Apply constraint easily
- PK: (time, currency)
- All in one table

- Derived Data
- One currency and one set of indicators has a dedicated table.
- Store data after performing ETL from a data pipeline
- Relational DB

- Apply constraint easily
- PK: (time, currency)

- PostgreSQL on AWS RDS

15

16

Database Design: Raw-data Database

17

Database Design: Derived-data Database

Data Ingestion - Design

- Historical Data
- Insert manually

- Explore and Clean Data first
- One-time Operation + Large data size

- Bulk Insertion is more efficient
- Find Pattern

- Create Automation for further new-generated data
- New-Generated Data

- Insert automatically
- AWS Lambda + AWS EventBridge Rule

18

Data Ingestion - Usage

- 1440 rows per day per currency (1440 minutes)
- Limitation

- Limit 1000 rows per query for BinanceAPI
- Solution: 2 queries per day

- 0:00 and 12:00 UTC+0
- 720 rows per query
- Can increase frequency(e.g. 3 per day) to update data more real-time

- No Available Libraries in Lambda’s Python Runtime
- Pack libraries as .zip and include as layers
- Libraries must be downloaded in the same Python version as Lambda Runtime Env

19

20

AWS Lambda Limitation

- Tough to debug and test
- Not suitable for implementing a complex operation.

- Tough to manage dependencies
- Although having layers, this method is time-consuming and error-prone
- Layer having size > 50 MB must be separated to two smaller layers (AWS Limitation)

- More appropriate tool (e.g. data pipeline tool) should be used

21

Data Transformation - Design

- Historical Data
- Insert Manually
- One-time Operation + Large amount of data

- Not worthwhile to automate this
- New-generated Data

- Automated ETL
- Mage.ai (Data Pipeline Tool) is applied.

- Apache Airflow requires at least 4GB RAM
- Has less functions but more than enough for creating data pipelines

22

Data Transformation - Usage

- Extract data from raw-data database
- ETL is firstly implemented in Google Colab

- Pandas is enough for approx 3M rows
- Test with Historical Data

- Then, it is adapted as a data pipeline in Mage.ai
- Directed Acyclic Graph (DAG)
- Use the pipelines to transform new-generated data

- Schedules are configured to automatically trigger the pipeline to run

23

24

25

Training Management System

- Track experiments, Record relevant information, and Be a centralized source
for distributing models

- MLFlow: Hosted on EC2
- Metadata: PostgreSQL on AWS RDS
- Artifact and Object: AWS S3 Bucket
- Prevent data loss from the instance failure
- IAM is required for accessing data in DB and S3

- “aws configure” to enter access and secret access key
- Attach “Roles” directly to EC2

- Training code is modified to utilize MLFlow to track the experiment.

26

27

28

Experiment Name

Original
Training Code

29

Experiment Names Run names

30

Model Monitoring

- Continuously monitor ML model
- Jupyter Notebook is inconvenient for opening and sharing
- Webpage is better

- Easier to share a line and open in any supported browser
- Streamlit

- Python-based: Easy to integrate with Matplotlib

31

32

Model results will be discussed later in the next section.

Model Building and Serving

- Bridging between the model experiment and the real-world application
- Building an API as an image and Deploying the image

33

34

35

within
“xgr”
group

within
“xgr”
group

Experiment Setup

- A software testing concept is adapted to test this system.
- A unit test tests whether a particular system functions properly.
- A component test will test whether an interaction between two systems work properly.
- A system test is applied to verify that all systems can work together properly.

- An integration test is skipped as our system has a small scale, and the borderline
between the system and integration test is blurred

36

Experiment Setup: Infrastructure List

- AWS
- S3 Bucket
- Lambda (Python 3.9 as Runtime Environment) with AWS EventBridge Rules
- EC2: t2.micro, 1vCPU, RAM 1GB
- RDS PostgreSQL: t3.micro, 2vCPU, RAM 1 GB, gp2-20GiB Storage
- DynamoDB: Pay per Request

- DigitalOcean
- Droplet: RAM 4GB, 2vCPU, 80GB Storage
- App Platform: RAM 2GB, 1vCPU
- Container Registry: 5GB Storage

37

Experimental Method: Unit Test

- IaC
- The scripts shall provision defined infrastructures with a defined specification.
- The state after running the script shall be updated and stored in S3 bucket.

- Data Ingestion
- Raw-data database shall be created.
- Historical data shall be able to be inserted manually to the raw-data database.
- New data shall be automatically retrieved from an external API and stored in the raw-data

database at the time specified by triggers.
- No duplicated data shall exist in the raw-data database.

38

Experimental Method: Unit Test

- Data Transformation
- Derived-data database shall be created.
- Historical data shall be able to be derived and inserted into the derived-data database

manually.
- The data pipeline shall be triggered at a specified time.
- The data pipeline shall successfully retrieve data from a defined data source, derive new

indicators, and store them in the derived-data database.
- Training Management

- The system shall be able to create several experiments.
- Each experiment shall be able to contain several runs.
- Each run shall contain logged data, such as metrics and hyperparameters, and model.
- The AWS access key and secret access key shall be required to log the experiment result

from the local to the system.

39

Experimental Method: Unit Test

- Model Monitoring
- The dashboard hosted on the website shall be able to visualize the model metrics on the

selected currency and date range.
- For this test, the hard-coded model and dataset can be used.

- Model Building and Serving
- After pushing the code into the main branch, the GitHub shall be automatically activated, and

the new built image shall be automatically deployed through the API.

40

Experimental Method: Component Test

- The data ingestion system shall always ingest new data and insert into the
raw-data database. The data transformation system shall be able to set the
raw-data database as the data source, derive new indicators, and insert them into
the derived-data database.

- The model building and serving system shall be able to retrieve the model from
the training management system and use it for serving. If there is a change in
the model version for serving, the new version shall be able to be deployed and
applied without rebuilding the image.

41

Experimental Method: Component and System Test

- The model monitoring system shall be able to retrieve data from derived-data
database and the model from the training management system. They shall be
used to generate a metric and graph to show the model performance.

- System test
- All components shall be able to work together properly.
- The overall system shall be run and periodically check whether there is any error occur

42

Non-Functional Requirements Testing

- Operational Requirements
- The system shall provide a result of at least 99% uptime.
- The system databases shall have 99% uptime.
- The system shall backup all databases to prevent data loss.

- Performance Requirements
- The system shall store daily data every day.
- The system shall provide a response within 5 seconds after making a request.

- Security and Privacy
- The system shall scrape data from a legal source only.
- The system shall allow only team members to access databases.

43

Test Result

44

45

46

Test Result

47

- Some operations provide a response using more than five seconds.
- The involvement of retrieving large amount of data.

Discussion

- The system has delivered an acceptable result.
- It contains the essential components for creating a simple end-to-end machine learning project

that includes from the data system to serving system.
- IaC

- Handle the unstandardized infrastructure problem.
- Define infrastructures’ specification including in this project and manages the provisioning

work.
- Data Ingestion and Transformation

- Handle the data quality and availability problem
- clean, collect, transform, and centralize data

- The most important ingredient for working with the machine learning model.

48

Discussion

- Training Management System
- Handle the experiment information recording and the model version distribution problem
- Store several versions of model, along with metadata
- Centralized source for serving the model

- Model Monitoring System
- Handle the unobserved model degradation problem
- Dashboard on the website to display graphs and metrics

- Model Building and Serving system
- Handle the model deployment problem
- API for serving models

- Ex. in this project: API is used by the model monitoring system

49

Discussion

- Each component can tackle various problems of the machine learning system
development.

- When connected together as a bot, it can work without the significant error.
- This bot can demonstrate the simple end-to-end machine learning system

- It satisfies major functional and non-functional requirements
- This project has effectively solved the identified issues

- Our project assessment will be covered later in the final section of this
presentation.

50

Discussion: Design Requirement Revisited

- Required Components
- Source Code Repository: GitHub
- Model Training Infrastructure: Local Computer and Google Colab
- Model Registry: MLFlow
- ML Metadata Stores: PostgreSQL and S3
- Model Serving Component: API by BentoML and DigitalOcean App Platform
- Model Monitoring Component: Streamlit
- Price Prediction Model

- One or more features as an input
- A single value as an output

- Price itself
- Difference in price

51

Model Development

52

Research

- Papers and Textbooks
- Other experienced teams

53

Summarize

- It will be a gigantic task to actually implement a model that outperform the
market by focusing only on one specific token due to our model being

OVERFIT.

54

Summarize

- Let’s imagine that there is an actual trend that could really provide profits to
users. In order to gain the highest amount of profit, users have to buy low and
sell high according to those trends.

- However, there are so many competitors within the field who will be using
statistical and quant approaches to detect the trends.

- Therefore, there are a significant chances that different players could end up
detecting the same price trend. Once the trends are detected, some users will
frontrun others to sell first. Resulting in the trend to always be changing.

55

Summarize

- This means the trend of cryptocurrency prices might still be close to before.
However, the change in trend could always be big enough to make the trained

model perform worse than just simply holding tokens.

56

Our decision

- That’s why we shifted our attention toward building models to gain the most
gains from shifting between tokens instead of focusing only on one token.

- For example, allocating our fund in day1 to token A and shift our fund in the
next day to other tokens once the token A is predicted to have its value

reduced.

57

Preprocess

The indicators we experimented on include but are not limited to the followings:

- Close price (normalized)
- ma7h-ma25h
- ma25h-99h
- ma7d-ma25d
- ma25d-ma99d
- RSI
- MACD
- Every Hour of Historical Price (normalized)

- Using data from the previous 1,2,3,4,..., 672 hours
- Bollinger Bands

58

Preprocess

Then, we plot out the feature significance of those indicators by training them with
some of our models.

59

Preprocess

We summarize that the indicators that contribute the most to the model
performances are the followings

- Close price (normalized)
- ma7h-ma25h
- ma25h-99h
- ma7d-ma25d
- Every 24 Hour Data of Historical Price (normalized)

- Using data from the previous 1,25,49,73,..., 635, 672 hours

60

Model Selection

- We listed out some of the models that are convenient to be implemented.
With more time provided, our team could experiment on more models and
might receive better results

61

Hypertuning models

- We adopted Optuna in hypertuning all our models.
- We set mean square error (MSE) as the objective function for training.

- The fewer, the better

62

Model Training

- We trained our model by having the training process recorded on MLFlow.

63

Model Evaluation

64

Model Evaluation

- Evaluation Datasets
- 20% of Historical price data of 194 currencies
- Recent price data of BTCUSDT spanning from January 1ˢᵗ to January

31ˢᵗ 2024
- Evaluation Metrics

- Pool Value
- Classification Report
- Actual vs Predicted Value Plot

65

Pool Value

- Uniquely designed metric that we designed ourselves
- Capable of telling whether the model can outperform the market.
- The logic underlying it is provided as following:

- We divide our money into 24 parts.
- Every start of an hour, we will predict which tokens will perform the best on the next 24 hours

and we will allocate our money to it.
- Total pool value represent the percent gains across all the pools.

66

Pool Value

- Higher pool value indicates better
performance

- Pool value is not ROI due to how some data
from the test cases are from the same time and
we can’t use our fund in different places at the
same time.

- Pool value of a model surpasses that of
the control groups(the pool value from
just holding the tokens in all scenarios),
indicating that some of our models are
able to outperform the market.

67

Classification Report

- Evaluated using recent price data of BTCUSDT
- Positive values are classified as Class 1.
- Negative values are classified as Class 0.
- Class 1 precision indicates model accuracy in buying decisions.
- Class 1 recall indicates missed buying opportunities.
- Models can be grouped into 2 groups based on their performance.

68

Classification Report

- Group 1
- Class 1 recall of 1 and class 0 recall of 0.
- Indicates that the model only predict upward trends; therefore, these models should not be

used.
- The model in this group, including Lasso, LassoLars, and Elastic Net, displays similar

performance.

69

Classification Report

- Group 2
- The model in this group includes XGBoost, Bayesian Ridge, Ridge, Huber, and CatBoost.
- Huber is the only model showing higher than 50% class 1 precision during the evaluation

period.
- Class 0 recall is significantly higher than the class 1 recall, which may implies the tendency to

predict negative values for the model in this group.

70

Actual vs Predicted Value Plot

- Evaluated using recent price data of BTCUSDT.
- The actual relative price and the predicted value are plotted in the same axis.
- Visualize if the model can capture the price trend.
- Requires human observation and judgement.
- Models can be grouped into 2 groups.

71

Actual vs Predecited Value Plot

- Group 1
- The model in this group includes Lasso, LassoLars, Elastic Net, and XGBoost.
- Grouping is similar to that of the classification report metric.
- Fail to capture the price trend.
- Most predicted values hovering around zero.

72

Actual vs Predecited Value Plot

- Group 2
- The model in this group includes Bayesian Ridge, Ridge, Huber, and CatBoost.
- Able to partially capture the price trend
- With some limitations

- Tendency to predict negative values aligning with speculation made when observing
classification reports

- Narrower ranges of predicted outputs
- Some delay in the prediction trend compared to the actual trend

73

Actual vs Preditced Value Plot

- Group 2
- Bayesian Ridge, Ridge, and Huber predict very similar trends, while CatBoost predict a slightly

different trend.

74

Discussion

- When market conditions resemble those of the train dataset
- CatBoost emerges as the best-performing model.

- With current market conditions
- Huber emerges as the best-performing model.

- There is a performance degradation problem on most of the models.
- Class 1 precision falls below 50% for many models.
- Hard to gain profits with this precision.

- The Huber model is either more tolerant to performance degradation or
coincidentally performs well in the current market condition.

75

Discussion

- Overall model performance can be further improved.
- While the models are able to partially capture the underlying trend, they struggle to predict

accurate values.
- There is a tendency to predict values in a certain class.

- The selected model should be able to perform acceptably in the current
market condition.

- Class 1 precision is at 53%.
- The model can make accurate buying decisions when the model predicts positive outcomes.

76

Discussion

- Reasons that factors to the underperformance of the model are speculated as
follows

- Using several currencies: Although the approach is taken to reduce the chance of overfitting, it
may come with trade off as each currency may have different natures.

- Constantly changing of market conditions: This is evident by the degradation in performance
of the models.

- Cryptocurrency is a highly voltaire market: Simple models may not be able to fully capture this
voltaire nature.

- MSE might not be the most appropriate metric to be used for the optimation: Other metrics
should also be considered.

77

Conclusion

78

Assessment: System

- Successfully implement a minimum viable product(mvp) of the E2E ML
system

- Weakness
- Data Ingestion and Transformation can be indeed implemented on Mage.ai

- However, also want to demonstrate serverless method
- Use multiple cloud providers

- Cannot fully integrate AWS features to DigitalOcean resources
- Alias, allowing immediate model changing, requires the model to be downloaded every time.

- Consume a large amount of memory
- Still be a problem of our APIs
- Maybe because we still don’t fully understand how BentoML works

- Can’t properly optimized

79

Next Step: System

- Implement an automated model training pipeline and refine other components
to fully fulfill Microsoft’s MLOps Level 2

- Find a method to improve the manual method to handle the historical data.
- Store timezone information along with datetime

- May have a problem with daylight saving time
- A method of always downloading the model should be refined
- Grafana for model and API monitoring instead of using Streamlit

80

Assessment: Model

- There are room for further improvement as evident by the evaluation result
using the recent data

- The best performing model should outperform the market in the current
condition.

- In the lab environment, several models have successfully outperformed the
market.

81

Next Step: Model

- Several potential methods for improving model performance and robustness
are proposed as follows:

- Probabilistic forecasting models, including AR, ARMA, and ARIMA, can be alternative
solutions.

- Deep Neural Networks (DNNs) are renowned for their ability to capture highly complex
relationships.

- The problem can be framed as a binary classification problem, opening up other objective
functions for model optimization.

82

Q & A

83

