Machine Learning Bot for
Financial Market

Submitted by

Wirachapong Suwanphibun
Sivakorn Lerttripinyo
Krittapasa Boontaveekul

Background

- Historical data in financial market is always collected.

- Collected historical prices can be used to predict a future trend.

- Machine Learning maybe able to predict by learning from data.

- Training Model is only a part of machine learning development project.

Machine
Resource Monitoring
; Management
Configuration Data Collection Serving

Infrastructure
coke Analysis Tools

Feature

Process
Extraction

Management Tools

Background: Problem

- Reliable data source

- Experiment data, such as models, hyperparameters, should be recorded
- Deploying models to the real-world application

- Changing a model version

- Underlying infrastructures to implement a system

Background

- Objective
- Design and implement a system going beyond the machine learning experiment.
- Conduct an experiment on a price prediction model
- Input
- Output
- Evaluation

Outline of this Presentation

- System

- Design

- Experiment

- Result and Discussion
- Model Development

- Design

- Experiment

- Result and Discussion
- Conclusion

- Assessment

- Next Steps

Design Requirement

- Steps for implementing ML project

- Data Extraction

- Data Analysis

- Data Preparation

- Model Training

- Model Evaluation

- Model Serving

- Model Monitoring

Design Requirement

- Applying MLOps: Use Maturity Model to evaluate
- No standardized model, but there are some proposals by Google and Microsoft
- Google Model: Level of Automation
- Microsoft Model: Technical Capability

- This project starts from Google’s MLOps Level O

- All components are run manually.

ML | Ops
Offline |
data
Manual experiment step:
Data extraction 5 Dat Model Model evaluation Trained] Model

+ a) -y N
and analysis (g'—) preparation N training B¢ and validation 4 model { serving
H H !
H H '
H H '
R e TRt o ; '
o

experimentation/development/test

sgag;ng/prepro;juctmn/produc1|gn e Mo

Design Requirement

- Then, the system is improved to achieve most features from Microsoft’s
MLOps Level 2

- Adata pipeline automatically gathers data

- Experiment results are tracked

- Both the training code and the resulting models are version-controlled

- Implementing models are heavily dependent on data scientist expertise
- Application code has unit tests

- Basic integration tests exist for the model

Design Requirement

- Required Components

Source Code Repository
Model Training Infrastructure
Model Registry
ML Metadata Stores
Model Serving Component
Model Monitoring Component
Price Prediction Model: Be covered in the next section
One or more features as an input
A single value as an output
Price itself
Difference in price

Infrastructure Management

- AWS and DigitalOcean

- Free Tier for AWS
- Free 200 USD for DigitalOcean

- Infrastructure as Code (IaC) to manage infrastructures’ specification
- Terraform
- Backend on AWS S3 (State) and AWS DynamoDB (LocklID)
- Locking Management
- State Management
- Secret
- Having additional infrastructures for managing the state is worthwhile, albeit troublesome.

10

resource "aws_security_group" "cap_aws_sg" {

name "postgresql-rds-sg"
ingress {

from_port

to_port

protocol "TCP"
cidr_blocks "0.0.0.0/0"
}

egress {
from_port
to_port

protocol "TCP"
cidr_blocks "0.0.0.0/0"

)
}

terraform apply

-var-file=["02-value.tfvars"

tfvars is not stored in GitHub.

1

terraform > ¥ 03-main.tf

provider "aws" {

region = "ap-southeast-1"

> resource "aws_security group" "cap_aws_sg" {

}

resource "aws_db_instance” "seniorproj_db" {

identifier

engine

engine_version
instance_class

db_name

username

password
allocated_storage
storage_type

publicly accessible
backup_retention_period
skip_final_snapshot
vpc_security_group_ids

tags = {
Name =

"seniorproj_db"

"maindb-seniorproj"
"postgres”

"14.10"
"db.t3.micro"
"seniorproj_maindb"
var.db_username
var.db_password

20
“gp2
true
2
true

1]

[aws_security_group.cap_aws_sg.i

Terraform State File

{} terraformjson X
> AppData >

resources":

"instances": [

{

"attributes”:

"license_model": "postgresql-license",
"listener_endpoint": [],
"maintenance_window": "tue:16:16-tue:16:46",
"manage_master_user_password": 1
"master_user_secret”: [],
"master_user_secret_kms_key id":
"max_allocated_storage”: O,
"monitoring_interval®: o,
"monitoring_role_arn": "",
"multi_az":
"nchar_character_set_name":
"network_type": "IPV4",
"option_group_name": "default:postgres-14",
"parameter_group_name": "default.postgresl4”,
“password” : " df G D -
"performance_insights_enabled":
"performance_insights_kms_key id
"performance_insights_retention_period”: 9,
"port": 5432,

12

Amazon S3 > Buckets » seniorproj-terraform-state-s3 » global/ > s3/

s3/

Objects Properties

Objects (1) info
[C [P Copy S3 URI Copy URL M Download Open [4 Delete Actions ¥

Create folder _

Objects are the fundamental entities stored in Amazon S3. You can use Amazon S3 inventory [to get a list of all objects in your bucket. For others to access your
objects, you'll need to explicitly grant them permissions. Learn more [

[O\ Find objects by prefix ‘ D show versions <1 @

(] Name A ‘ Type v Last modified v Size v ‘ Storage class v

March 21, 2024,
a [terraform.tfstate tfstate 14:44:18 30.3 KB Standard
(UTC+07:00)

DynamoDB > Exploreitems > seni j f
Tables (3) x seniorproj-terraform-state-dynamodb
Any tag key v
v Scan or query items
Any tag value v
Q Find tables by table name [o) e ‘ i o i, ‘
<12 @ Select a table or index Select attribute projection

5 ‘Tahle—seniorproj—terraform—state—dynamodb v ‘ lALl attributes v

seniorproj-terraform-state-
O ymamodd

4 » Filters
o

Items returned (1)

<1> @R

O LockiD (String) v | Digest v

[m] seniorproj form-... 2f 4aBe237d3’

¥ 09-digitaloceantf X

terraform > ¥ 09-digitalocean.tf

irce “"digitalocean_app" "bento_app"

spec {
name

region

= "bento-app-spec-terraform”
= "sgp"
env

key "AWS_ACCESS_KEY_ID"

value = var.s3_access

type "SECRET"

env
key "AWS_SECRET_ACCESS_KEY"
value var.s3_secret_access
type =SECRET=

Eteratomn +v D 8 - ~ X

TERMINAL

Terraform used the selected providers to generate the following execution plan. Resource actions are indicated with the following symbols:
~ update in-place

Terraform will perform the following actions:
digitalocean_app.bento_app will be updated in-place

~ resource "digitalocean_app" "bento_app" {
id = "dfe8d3a3-1025-4eec-ab85-9860a6f21f32"

~ spec {
~ features = [

Error acquiring the state lock

Error message: operation error DynamoDB: PutItem, https response error StatusCode: 400, RequestID:
FS2R7PP1VTQMKC2MFU4KDOMH1VVVAKQNSOSAEMVIF66Q9ASUAAIG, ConditionalCheckFailedException: The conditional request failed
Lock Info:

ID: aaa27854-b%ad-80ca-4c97-ala3bbcffbfe

Path: seniorproj-terraform-state-s3/global/s3/terraform.tfstate

Operation: OperationTypeApply

Who: CAQ_DESKTOP\super@CaQ_Desktop

Version: 1.3.9

Created: 2024-05-088 14:25:17.2242123 +0600 UTC

Info:

Terraform acquires a state lock to protect the state from being written

Database Design

- Raw Data
- Data from BinanceAPI
- Relational DB
- Apply constraint easily
- PK: (time, currency)
- Allin one table

- Derived Data
One currency and one set of indicators has a dedicated table.
Store data after performing ETL from a data pipeline
Relational DB

- Apply constraint easily
PK: (time, currency)

- PostgreSQL on AWS RDS

15

Database Design: Raw-data Database

Query Query History Data Output Messages Notifications
== [_ﬁ v D v i 8 & ~»

currency , time P bpen , close 5 low p high / volume y
[PK] text [PK] timestamp without time zone louble precision double precision double precision double precision double precision

BTCUSDT 2024-03-28 11:59:00 70637.99 70647.18 70616.41 70647.18 14.91807

BTCUSDT 2024-03-28 11:58:00 70673.05 70673.06 70626.33 70638 11.27007
BTCUSDT 2024-03-28 11:57:00 70702.01 70702.01 70673.05 70673.06 19.92578
BTCUSDT 2024-03-28 11:56:00 70747.01 70747.02 70700 70702 28.8656
BTCUSDT 2024-03-28 11:55:00 70682 70748 70682 70747.02 12.802
BTCUSDT 2024-03-28 11:54:00 70660 70692.06 70659.99 70682.01 22.7333
BTCUSDT 2024-03-28 11:53:00 70674.96 70681.99 70647.06 70660 14.35116
BTCUSDT 2024-03-28 11:52:00 70715.05 70715.05 70658.92 70674.96 16.10953
BTCUSDT 2024-03-28 11:51:00 70700 70727.93 70670.16 70715.04 28.70524
BTCUSDT 2024-03-28 11:50:00 70665.99 70720 70665.99 70700 28.57304
BTCUSDT 2024-03-28 11:49:00 70685.93 70685.94 70665.99 70666 14.85146

Database Design: Derived-data Database

@ crypto_ind_adausdt
@ crypto_ind_ethusdt
@ crypto_ind_one

time y
[PK] timestamp without time zone

2024-05-13 23:59:00
2024-05-13 23:58:00
2024-05-13 23:57:00
2024-05-13 23:56:00
2024-05-13 23:55:00
2024-05-13 23:54:00
2024-05-13 23:53:00
2024-05-13 23:52:00

2
3
4
5
6
7
8
9

2024-05-13 23:51:00

currency ,
[PK] text

ETHUSDT
ETHUSDT
ETHUSDT
ETHUSDT
ETHUSDT
ETHUSDT
ETHUSDT
ETHUSDT
ETHUSDT

close_minmax_scale
double precision

0.2227577896
0.2212467244
0.2212467244
0.2192192192
0.2192000918
0.2189705629
0.2176890266
0.2170004399
0.2175933896

close
double precision

2951.05
2950.26
2950.26

2949.2
294919
2949.07

290484
2948.04
2948.35

ma25_9%h
double precision

-2.862040404
-3.1062505051
-2.9413373737
-2.8162666667

-2.923830303
-3.1964363636
-3.1386909091
-3.2212323232
-3.5102626263

ma7_25h
double precision

6.6394285714
6.3083428571
6.0204571429
5.9367428571

6.0408
5.8499428571
6.2338857143
6.0037142857
6.8582857143

ma7_25d
double precision

-122.3024571429
-122.4149142857
-122.7217142857
-122.2489714286
-122.7245142857
-122.0528571429
-122.2893142857

-122.7628
-122.6173714286

ma25_9%h_scale
double precision

-0.000969838
-0.0010528735
-0.0009969756
-0.0009549256
-0.0009914011
-0.0010838794
-0.0010645404
-0.0010926691
-0.0011905855

ma7_25h_scale
double precision

0.002249853
0.0021382329
0.0020406531
0.0020130011
0.0020482912
0.0019836568
0.0021143284
0.0020365105
0.0023261437

ma7_25d_scale
double precision

-0.0414437089
-0.0414929241
-0.0415969149
-0.0414515704
-0.0416129562
-0.0413868973
-0.0414765006
-0.0416421758

-0.041588472

17

Data Ingestion - Design

Historical Data

Historical
Data

Insert manually
- Explore and Clean Data first
- One-time Operation + Large data size
- Bulk Insertion is more efficient

rj

Y

Amazon
RDS

- Find Pattern
- Create Automation for further new-generated data

New-Generated Data

Insert automatically
AWS Lambda + AWS EventBridge Rule

18

Data Ingestion - Usage

- 1440 rows per day per currency (1440 minutes)
- Limitation
- Limit 1000 rows per query for BinanceAPI
- Solution: 2 queries per day
- 0:00 and 12:00 UTC+0
- 720 rows per query
- Can increase frequency(e.g. 3 per day) to update data more real-time
- No Available Libraries in Lambda’s Python Runtime
- Pack libraries as .zip and include as layers
- Libraries must be downloaded in the same Python version as Lambda Runtime Env

19

insert-crypto-data-daily

<
= Layers

(1)

cf:“ EventBridge (CloudWatch Events)

(2)

20

AWS Lambda Limitation

- Tough to debug and test
- Not suitable for implementing a complex operation.
- Tough to manage dependencies

- Although having layers, this method is time-consuming and error-prone
- Layer having size > 50 MB must be separated to two smaller layers (AWS Limitation)

- More appropriate tool (e.g. data pipeline tool) should be used

21

Data Transformation - Design

Historical
Data

Historical Data —

New-generated Data

Insert Manually
One-time Operation + Large amount of data

Not worthwhile to automate this ﬁg?zon

Updated
Data

Automated ETL Raw Data
Mage.ai (Data Pipeline Tool) is applied.

S

Y

Amazon
RDS

Indicators

Apache Airflow requires at least 4GB RAM

Has less functions but more than enough for creating data pipelines

22

Data Transformation - Usage

- Extract data from raw-data database
- ETL is firstly implemented in Google Colab

- Pandas is enough for approx 3M rows
- Test with Historical Data
- Then, it is adapted as a data pipeline in Mage.ai
- Directed Acyclic Graph (DAG)
- Use the pipelines to transform new-generated data

- Schedules are configured to automatically trigger the pipeline to run

ur_first_project > Triggers aunch Command Center @ v0.9.66 08:19 UTC %

Sortruns by: Created at

halfday_trigger_ 2024-04-07 09:58:39 0 13 * * * 2024-05-11 13:00:00

halfday._trigger_ 2024 00 01 * * * 2024-05-12 01:00:00

halfday_trigger._’ 2024 00 * * * 2024-05-11 13:00:00

halfday._trigger_ 2024 5 00 01 * * * 2024-05-12 01:00:00

halfday._trigger_ 2024-02-25 13:11:48 AM 01 % % * 2024-05-12 01:00:00

halfday._trigger._ 2024-02-25 04:48:20 rigg 0 13 * * * 2024-05-11 13:00:00

n date_formatter

n set_time_index

D scale_close

D to_pg_crypto_ind_btcusdt

log_iasert

24

] your_first_project Pipelines etl_btcusdt_indl Edit Launch Command Center
ALLFILES CURRENT BLOC}H File Edit Run

Search files BYj & date_formatter <o 1 parent ¢ 3 pipelines

& set_time_index <o 1 1t 2 pipelines

fo not in globals():
om mage_ai.data_preparation.decorators import transformer
not in globals():
W scratchpads from mage_ai.data_preparation.decorators import test
transformers

& pip

B utils

2 nit

transform(df, *args, *xkwargs):

e

[o comte-ind btcusat

log et

df = df.iloc[::-1].reset_index(drop=Tr
df.set_index('time’, inplace=True)
df = df.sort_values(by="time")

return df

Training Management System

- Track experiments, Record relevant information, and Be a centralized source
for distributing models

- MLFlow: Hosted on EC2
- Metadata: PostgreSQL on AWS RDS
- Artifact and Object: AWS S3 Bucket
- Prevent data loss from the instance failure
- IAM is required for accessing data in DB and S3

- “aws configure” to enter access and secret access key
- Attach “Roles” directly to EC2

- Training code is modified to utilize MLFlow to track the experiment.

26

Amazon S3 > Buckets » mlflow-bucket-test-1012-seniorproj » 11/ > cccOd8aee3a54fe1bb002cdf3506bd25/ » artifacts/ > model/

model/ =

Objects Properties

Objects (5) info
‘ c ‘ Actions ¥ Create folder | | [f] Upload

Objects are the fundamental entities stored in Amazon S3. You can use Amazon 53 inventory [to et a list of all objects in your bucket. For others to access your objects, you'll need to explicitly

permissions. Learn more

‘ Q Find objects by prefix

ied v Size v Storage class

a Name a Type v | Lastmo

February 26, 2024, 14:05:05
(UTC+07:00)

(W] D conda.yaml yaml 239.0B Standard

February 26, 2024, 14:05:06

a [MLmodel - (UTC+07:00) 515.0B Standard

February 26, 2024, 14:05:06
11.5KB Standard

O @ model.xgh xgb (11TC+07:00)

W seniorpre xperiments/miflow_test/seniorproj_kimjongun@seniory

« © Databases (4) NIEE S YV 0o ~ |[WIES IEIEE
v @ miflow_test
> B ca
% Catalogs s ~
> W Event Triggers experimentid , name artfact Jocation lfecycle_stage creation_time _, _last_update_time
PK]in character varying (256) character varying (haracter varying bigint bigint

Query QueryHistory DataOutput Messages Notifications

@ Foreign Data Defauit miflow-bucket-test-1012-seniorproj, 16989536
> @ Languages nyc-taxi miflow-bucket-test-1012-seniorproj 1705744737146

& Publications mifiow-bucket-test-1012-Seniorproj/2 1705746420871
% Schemas (1) ymifio 012-seniorproj

~ @ public
> 8 Aggregates

ymifo 12-seniorpro
bucket test-1012-seniorproj/s
Collations buckettest-1012-seriorproj
a Domains SO t24hrs Regression_ HN_ind bucketest-1012-seniorproj 1708929418074
B FTS Configurations 2 24hrs_Regression_HN.ind buckettest-1012-seniorproj 1700450755762
I\ FTS Dictionaries ation_MS buch 12-seniorproj/
ction_ Minute_Regression MS niffow-buc 12-seniorpro
W FTsTemplates MainTradingBotXGBoostExperimentBigDatavers miflow-bucket-test-1012-seniorproj
W Foreign Tables MainTradingBotXGBoostExperimentBigDatavers miflow-bucket-test-1012-seniorproj,
@ Functions 9 MainTradingBotLASSOBigDataversio bucket-test-1012-seniorproj active
[k s MainTradingBotHuberRegre buckettest1012-seniorproj/20 | active 1711666456956

1711666476760 1711666476760

% Operators
21 MainTradingBotBayesiankidgeBigataversion niflow-bucket-test-1012-seniorpro}

@ Procedur:
2 MainTradingBotRidgeTUNEDBigData ow-bucket test-1012-seniorproj/22 1711666489014 711666489014
Sequences
Tables (16)
> @

MainTradings OLARSTUNEDBigDa miflow-buckettest1012-seniorproj 11666500
MainTradings TICNETBigDa miflow-buckettest1012-seniorproj/2 05
MainTradingBotCatBoostRegressorBigDatay /miflow-buckettest1012-seniorpr 1711666633372
e P MainTradingBotTradingAdditionalRound2 /miflow-buckettest1012-seniorpr 1711666833507
B experiments MainTradingBotTradingAdditionalRoun miflow-buckettest1012-seniorproj

> W input tegs MainTradingBotTradingAdditionalRoundd s -bucket-test-1012-seniorproj/2 1711667288986
> W inputs MainTradingBotTradingAdditionalRounds -bucket-test-1012-seniorproj 1711667548555

MainTradingBotTradingAdditionalRounds -bucket-test-1012-seniorproj/30 1711667768450

27

O 0 N0 kW N -

e e e i
o O bk W N = O

Experiment Name

TRACKING_SERVER HOST = "..."
mlflow.set_tradking uri(f"http://{TRACKING_SERVER_HOST}:<port>")

mlflow.set_experiment("...")

with mlflow.start_run(run_name="..."):
! "colsample_bytree": 0.3,
| "learning_rate": 0.1, i
: <more params can be added>

'xg_reg.fit(X_train, y_train)
iy_test_pred = xg_reg.predict(X_test)
[EWBT_mee »mesn_squared. srror(y test, yitest_pred)

mlflow.log _metric("test_mse", test_mse)
mlflow.xgboost.log_model(xg_reg, "model")

Original
' Training Code

28

m' C 2102 Experiments Models

€ GitHub Docs

Experiments ®O BTCUSDT _Price_Prediction_next24hrs_Regression_HN_ind

> Description

Q g Time created v State: Active = Sort: Created v

Columns v

Table Chart Evaluation |Experimental

Run Name Created =Y Dataset Duration Source

27 days ago 2025 colab_ker...

27 days ago colab_ker...

27 days ago

PATI colab_ker...

Experiment Names

€ GitHub Docs

ml//c 102 Experiments Models Run nameS

BTCUSDT_1
cccOdBaee3a54fe 1bb002c3S06bA25 2024-02-26 140446 colab kernel launcher py

2026 tarus: FINISHED

v Description

predict next 24 hrs using XGBoost

> Datasets
> Parameters (1)
> Metrics (1)
> Tags
v Aifacts
- model

B Mumodel Registored on 2024/02/29
condayaml

@ modelxgb MLflow Model

@ python envyam!

- e The code sippets below demonstrate how to make predictions using the logged model. This model is also registered to the
requirements.

* FullPaths3y/mifiow-bucket-test-1012-seniorproj/ 11/cccOdgace3as4fe1bb002ccl3506bd25 arifacts/mode

Model schema Make Predictions

Input and output schema for your model Predict on a Spark DataFrame:

BTCUSDT_1

cccOd8aee3as54fe1bb002cdf3506bd25 2024-02-26 14:04:46

FINISHED
v Description

predict next 24 hrs using XGBoost

MIT/OW 2102 Experiments Models

> Datasets
BTCUSDT _1
cccOdBace3a54felbb002cdf3506bd25 2024-02-26 14:04:46 colab, kernel_launcher.py v Parameters (11)
2026 FINISHED
v Description

Name
predict next 24 hrs using XGBoost

alpha

> Datasets

colsample_bytree
> Metrics (1)

> Tags currency BTCUSDT

v Artifacts

end-datetime 2024-02-24 23:59:00

& model
B Mumodel
@ condayaml

@ modelxgh MLflow Model

@ python env.yam

2-seniorproj/1

feature close_minmax_scale, ma7_25h_scale, ma25_99h_scale, ma7_25d_scale

2 i The code snippets below demonstrate how to make predictions using the logged model. This model is also registered to the
requirements bt

learning_rate 0.1
Model schema Make Predictions

Input and output schema for your model. Predict on a Spark DataFrame:

max_depth

n_estimators 10

objective reg:squarederror

prediction result (%up/down in next 24 hrs)

start-datetime 2017-09-12 11:59:00

Model Monitoring

- Continuously monitor ML model
- Jupyter Notebook is inconvenient for opening and sharing
- Webpage is better

- Easier to share a line and open in any supported browser
- Streamlit
- Python-based: Easy to integrate with Matplotlib

31

Choose a table

crypto_ind_one

Choose a start date

2024/01/01

Choose a start time

00:00

Choose an end date

2024/01/31

Choose an end time

23:45

Choose a model:

CBR

Visualization of Predicted Values
Over Time

Start Time: 2024-01-01 00:00:00

Visualization of Predicted Values
Over Time

Start Time: 2024-01-01 00:00:00

End Time: 2024-01-31 23:45:00

Predicted Growth Over Time using CBR

Predicted Growth

Model results will be discussed later in the next section.

Predicted Growth Over Time using CBR

—— Actual growth
Predicted growth

\‘“W/’ " Qﬂl

precision recall fl-score support

0.43 0.65 0.52 20444
0.41 0.22 0.28 22742

0.47 43186

32

Model Building and Serving

- Bridging between the model experiment and the real-world application
- Building an API as an image and Deploying the image

33

()

bentofile.yaml

bento build
requirements txt Bento

< bento containerize
service.py

@ InferenceAPI

api POST
A POST
serving
Help
« (1) Docu : Leam how to use BentoML.
. nity: Join the BentoML Slack community.
o 3i : Report bugs and feature requests.
'.. - Tip: you can also customize this README.
DigitalOcean

-»>

model serving 1

Images

miflow

Image Registry

Servers

Service APIs BentoML Service API endpoints for inference.

Model + Metadata + Artifact

sues 1 Pull requests

@ Debug request body #

(@ Summary

@ build_and_push

Usage

5 Workflow file

/predict_xgboost InferenceAPI(JSON — NumpyNdarray)

/predict InferenceAPI(JSON — NumpyNdarray)

Actions [Projects @ Security [~ Insights i Settings

@ MATT138 pushed -o- f70d64a Success

@ build and push

Input Output
JSON NumpyNdarray
JSON NumpyNdarray

Re-run all jobs

34

within
“Xg r!l
group

within
“Xg r,l
group

version 1 Step 2
xgr@production
version 2 mlf/ow
version 3 < T
alias: production
Step 3

model from V3

Step1

group: xgr
alias: production

1|
—

Images #1

api

Step 4
model from V3

- version 1 Step 2
xgr@production

version 2 mlflow

version 3

version 4 -
| alias: production [~

Step 3
model from V4

Step1
group: xgr
alias: production

D

— Images #1

—Q
api

Step 4
model from V4

35

Experiment Setup

- A software testing concept is adapted to test this system.
- Aunit test tests whether a particular system functions properly.
- A component test will test whether an interaction between two systems work properly.
- Asystem test is applied to verify that all systems can work together properly.
- Anintegration test is skipped as our system has a small scale, and the borderline
between the system and integration test is blurred

36

Experiment Setup: Infrastructure List

- AWS
- S3 Bucket
- Lambda (Python 3.9 as Runtime Environment) with AWS EventBridge Rules
- EC2: t2.micro, 1vCPU, RAM 1GB
- RDS PostgreSQL: t3.micro, 2vCPU, RAM 1 GB, gp2-20GiB Storage
- DynamoDB: Pay per Request
- DigitalOcean

- Droplet: RAM 4GB, 2vCPU, 80GB Storage
- App Platform: RAM 2GB, 1vCPU
- Container Registry: 5GB Storage

37

Experimental Method: Unit Test

laC

The scripts shall provision defined infrastructures with a defined specification.
The state after running the script shall be updated and stored in S3 bucket.

Data Ingestion

Raw-data database shall be created.

Historical data shall be able to be inserted manually to the raw-data database.

New data shall be automatically retrieved from an external API and stored in the raw-data
database at the time specified by triggers.

No duplicated data shall exist in the raw-data database.

38

Experimental Method: Unit Test

- Data Transformation

Derived-data database shall be created.

Historical data shall be able to be derived and inserted into the derived-data database
manually.

The data pipeline shall be triggered at a specified time.

The data pipeline shall successfully retrieve data from a defined data source, derive new
indicators, and store them in the derived-data database.

- Training Management

The system shall be able to create several experiments.

Each experiment shall be able to contain several runs.

Each run shall contain logged data, such as metrics and hyperparameters, and model.
The AWS access key and secret access key shall be required to log the experiment result
from the local to the system.

39

Experimental Method: Unit Test

- Model Monitoring
- The dashboard hosted on the website shall be able to visualize the model metrics on the
selected currency and date range.
- For this test, the hard-coded model and dataset can be used.
- Model Building and Serving

- After pushing the code into the main branch, the GitHub shall be automatically activated, and
the new built image shall be automatically deployed through the API.

40

Experimental Method: Component Test

The data ingestion system shall always ingest new data and insert into the
raw-data database. The data transformation system shall be able to set the
raw-data database as the data source, derive new indicators, and insert them into
the derived-data database.

The model building and serving system shall be able to retrieve the model from
the training management system and use it for serving. If there is a change in
the model version for serving, the new version shall be able to be deployed and
applied without rebuilding the image.

41

Experimental Method: Component and System Test

- The model monitoring system shall be able to retrieve data from derived-data
database and the model from the training management system. They shall be
used to generate a metric and graph to show the model performance.

- System test
- All components shall be able to work together properly.
- The overall system shall be run and periodically check whether there is any error occur

42

Non-Functional Requirements Testing

- Operational Requirements

- The system shall provide a result of at least 99% uptime.

- The system databases shall have 99% uptime.

- The system shall backup all databases to prevent data loss.
- Performance Requirements

- The system shall store daily data every day.

- The system shall provide a response within 5 seconds after making a request.

- Security and Privacy
- The system shall scrape data from a legal source only.
- The system shall allow only team members to access databases.

43

Test Result

Topic Result (Pass/Partial Pass/Fail)
Infrastructure as Code Pass
Data ingestion system Pass
Data transformation system Pass
Training management system Pass
Model monitoring system Pass
Model building and serving system | Pass

Table 2: Unit Test Result

Topic Result (Pass/Partial Pass/Fail)
Data Ingestion + Data Transformation Pass
Building and Serving + Management System | Pass
Model monitoring + Management System Pass

Table 3: Component Test Result

44

CloudWatch » Loggroups » /aws/lambda/extract_func

/aWS/lambda/eXtraCt_funC [Actions ¥ ‘ [View in Logs Insights ‘ ’ Start tailing ‘ _

>

Log group details

Log streams Tags Anomaly detection Metric filters Subscription filters Contributor Insights Data protection

Log streams (11)

[Create log stream ‘ [Search all log streams

Q Filter log streams or try prefix search

! [Exact match [J Show expired @ Info < 1 > &

O Log stream v ‘ Last event time v
O 2024/05/06/[$LATEST]961bd54775654a8ba137f12704e418b0 2024-05-06 07:00:58 (UTC+07:00)
0 2024/05/05/[$LATEST]098eef322f794cfe9ef6e091647090cc 2024-05-05 19:00:19 (UTC+07:00)
0O 2024/05/05/[$LATEST]49413c01345c4f74b7ff9b39d93f9c48 2024-05-05 07:00:57 (UTC+07:00)
0O 2024/05/04/[$LATEST]28¢32035213d4f59a3b52c7eadb039db 2024-05-04 19:00:18 (UTC+07:00)
Log events ’ C ‘ ’ Actions ¥ ‘ [Start tailing ‘ c

You can use the filter bar below to search for and match terms, phrases, or values in your log events. Learn more about filter patterns £

Q Filter events - press enter to search

H m 1h ‘Localtimezone v H Display ¥ &

» Timestamp

2024-05-06T07:00:50.075+07 : 00

2024-05-06T707:00:51.215+07:00

2024-05-06T07:00:58.129+07:00

2024-05-06T07:00:58.129+07:00

Message

No older events at this moment. Retry

INIT_START Runtime Version: python:3.9.v50 Runtime Version ARN: arn:aws:lambda:ap-southeast-1::runti..
START RequestId: dfbl2c7c-b@d8-4fc7-9a3e-8cb@9eld6lcb Version: $LATEST

END RequestId: dfbl2c7c-b@d8-4fc7-9a3e-8cb@9eld6lch

REPORT RequestId: dfbl2c7c-b@d8-4fc7-9a3e-8cb@9eld6lcb Duration: 6914.40 ms Billed Duration: 6915 ms..

No newer events at this moment. Auto retry paused. Resume

45

your_first_project

etl_ethusdt

etl_btcusdt_indl

_adausdt

etl_ethusd

etl_btcusdt_indl

etl_adausdt

1

halfday_trigger_0100

halfday_trigger_0100

halfday_trigger_0100

halfday_trigger_1300

halfday_trigger_1300

halfday_trigger_1300

halfday_trigger_0100

halfday_trigger_0100

halfday_trigger_0100

Launch Command Center

LB v0.9.66 04:43 UTC <% Live help

05-05T13:01:

%

Test Result

Topic

Result (Pass/Partial Pass/Fail)

Operational

Pass

Performance

Partial Pass

Security and Privacy

Pass

Table 4: Non-functional Requirements Test

- Some operations provide a response using more than five seconds.
- The involvement of retrieving large amount of data.

47

Discussion

- The system has delivered an acceptable result.
- It contains the essential components for creating a simple end-to-end machine learning project
that includes from the data system to serving system.

- Handle the unstandardized infrastructure problem.
- Define infrastructures’ specification including in this project and manages the provisioning
work.

- Data Ingestion and Transformation

- Handle the data quality and availability problem
- clean, collect, transform, and centralize data
- The most important ingredient for working with the machine learning model.

48

Discussion

- Training Management System

- Handle the experiment information recording and the model version distribution problem
- Store several versions of model, along with metadata
- Centralized source for serving the model

- Model Monitoring System

- Handle the unobserved model degradation problem

- Dashboard on the website to display graphs and metrics
- Model Building and Serving system

- Handle the model deployment problem

- API for serving models
- Ex.in this project: APl is used by the model monitoring system

49

Discussion

- Each component can tackle various problems of the machine learning system
development.
- When connected together as a bot, it can work without the significant error.

- This bot can demonstrate the simple end-to-end machine learning system

- It satisfies major functional and non-functional requirements
- This project has effectively solved the identified issues

- Our project assessment will be covered later in the final section of this
presentation.

50

Discussion: Design Requirement Revisited

- Required Components
- Source Code Repository: GitHub
- Model Training Infrastructure: Local Computer and Google Colab
- Model Registry: MLFlow
- ML Metadata Stores: PostgreSQL and S3
- Model Serving Component: APl by BentoML and DigitalOcean App Platform
- Model Monitoring Component: Streamlit

51

Model Development

Research

- Papers and Textbooks
- Other experienced teams

ADVANCES

FINANCIAL
MACHINE

LEARNING

53

Summarize

- It will be a gigantic task to actually implement a model that outperform the
market by focusing only on one specific token due to our model being
OVERFIT.

54

Summarize

Let’s imagine that there is an actual trend that could really provide profits to
users. In order to gain the highest amount of profit, users have to buy low and
sell high according to those trends.

However, there are so many competitors within the field who will be using
statistical and quant approaches to detect the trends.

Therefore, there are a significant chances that different players could end up
detecting the same price trend. Once the trends are detected, some users will
frontrun others to sell first. Resulting in the trend to always be changing.

55

Summarize

- This means the trend of cryptocurrency prices might still be close to before.
However, the change in trend could always be big enough to make the trained
model perform worse than just simply holding tokens.

56

Our decision

- That’s why we shifted our attention toward building models to gain the most
gains from shifting between tokens instead of focusing only on one token.

- For example, allocating our fund in day1 to token A and shift our fund in the
next day to other tokens once the token A is predicted to have its value
reduced.

57

Preprocess

The indicators we experimented on include but are not limited to the followings:

- Close price (normalized)
- ma’7h-ma25h

- ma25h-99h

- ma’7d-ma25d

- ma25d-ma99d

- RSI

- MACD

- Every Hour of Historical Price (normalized)
Using data from the previous 1,2,3,4,..., 672 hours

- Bollinger Bands

58

Preprocess

Then, we plot out the feature significance of those indicators by training them with
some of our models.

Feature importance

ma7_25d 14.0
Price_-555h 6.0 |

Price_-1h
ma25_99h
ClosePrice

Price_-645h
Price_-311h
ma7_25h

0 Price_-672h
5 Price_-671h 1
‘w Price_-345h
& Price_-121h -

Price_-110h

Price_-39h A
Price_-12h A
Price_-5h
Price_-637h

6.0

5.0
5.0

3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0

4.0
4.0
4.0

Price_-630h -
Price_-597h
Price_-585h -

N
=]

(=}
N
g
o
©

10 12 14

Preprocess

We summarize that the indicators that contribute the most to the model
performances are the followings

- Close price (normalized)
- ma’h-ma25h

- ma25h-99h

- ma’/d-ma25d

- Every 24 Hour Data of Historical Price (normalized)
Using data from the previous 1,25,49,73,..., 635, 672 hours

Model Selection

- We listed out some of the models that are convenient to be implemented.
With more time provided, our team could experiment on more models and
might receive better results

XGBoost

LassoLars

Bayesian Ridge
Ridge

Lasso

Elastic Net
Huber
CatBoost

Hypertuning models

- We adopted Optuna in hypertuning all our models.

- We set mean square error (MSE) as the objective function for training.
- The fewer, the better

f objective_lars(trial):
alpha = trial.suggest_float('alpha', 1le-6, 1.0)
model = LassoLars(alpha=alpha)

model.fit(X_train, y_train)
y_pred = model.predict(X_test)
return mean_squared_error(y_test, y_pred)

62

Model Training

- We trained our model by having the training process recorded on MLFlow.

with mlflow.start_run(experiment_id=experiment_id) as run:
best_model = Ridge(x*study.best_params)

best_model.fit(X_train, y_train)
y_pred = best_model.predict(X_test)

63

Model Evaluation

Model Evaluation

- Evaluation Datasets
20% of Historical price data of 194 currencies
Recent price data of BTCUSDT spanning from January 1st to January
31st 2024

- Evaluation Metrics
Pool Value
Classification Report
Actual vs Predicted Value Plot

65

Pool Value

- Uniquely designed metric that we designed ourselves
- Capable of telling whether the model can outperform the market.

- The logic underlying it is provided as following:
- We divide our money into 24 parts.
- Every start of an hour, we will predict which tokens will perform the best on the next 24 hours
and we will allocate our money to it.
- Total pool value represent the percent gains across all the pools.
pools = np.array([1.0] * 24)
pool_index = 0
for valuel,value? in zip(filtered_y_pred_data,filtered_y_test data):
print(index,value)
if valuel > 0.001:

pools[pool_index] *= (1+value2)
pool_index = (pool_index + 1) % 24 # Increment the pool index and loop back after the 24th

Sum the values of all pools

total_pool_value = np.sum(pools)/24

66

Pool Value

Higher pool value indicates better

performance
- Pool value is not ROI due to how some data
from the test cases are from the same time and
we can’t use our fund in different places at the
same time.

Pool value of a model surpasses that of
the control groups(the pool value from
just holding the tokens in all scenarios),
indicating that some of our models are
able to outperform the market.

Models Pool Value

XGBoost 1.226 x 10%
LassoLars 1.216 x 10~°
Bayesian Ridge | 1.661 x 10°
Ridge 2.693 x 103°
Lasso 1.516 x 107°
Elastic Net 1.516 x 10~°
Huber 1.216 x 10%Y
CatBoost 4.046 x 102
Control group | 1.144 x 1073

67

Classification Report

- Evaluated using recent price data of BTCUSDT

- Positive values are classified as Class 1.

- Negative values are classified as Class 0.

- Class 1 precision indicates model accuracy in buying decisions.

- Class 1 recall indicates missed buying opportunities.

- Models can be grouped into 2 groups based on their performance.

68

Classification Report

- Group 1

- Class 1 recall of 1 and class O recall of 0.

- Indicates that the model only predict upward trends; therefore, these models should not be

used.

- The model in this group, including Lasso. LassolLars, and Elastic Net, displays similar

performance.

Classification report for ElasticNet model

precision recall fl-score support

0 0.00 0.00 0.00 20458

1 0.53 1.00 0.69 22742

accuracy 0.53 43200
macro avg 0.26 0.50 0.34 43200
weighted avg 0.28 0.53 0.36 43200

Classification report for Lasso model

precision recall fl-score support

0 0.00 0.00 0.00 20458

1 0.53 1.00 0.69 22742

accuracy 0.53 43200
macro avg 0.26 0.50 0.34 43200
weighted avg 0.28 0.53 0.36 43200

69

Classification Report

- Group 2
- The model in this group includes XGBoost, Bayesian Ridge, Ridge, Huber, and CatBoost.
- Huber is the only model showing higher than 50% class 1 precision during the evaluation
period.
- Class 0 recall is significantly higher than the class 1 recall, which may implies the tendency to
predict negative values for the model in this group.

Classification report for Huber model

precision recall fl-score support

0 0.47 0.70 0.57 20458

1 0.53 0.30 0.38 22742

accuracy 0.49 43200
macro avg 0.50 0.50 0.47 43200
weighted avg 0.50 0.49 0.47 43200

70

Actual vs Predicted Value Plot

- Evaluated using recent price data of BTCUSDT.

- The actual relative price and the predicted value are plotted in the same axis.
- Visualize if the model can capture the price trend.

- Requires human observation and judgement.

- Models can be grouped into 2 groups.

71

Actual vs Predecited Value Plot

- Group 1

- The model in this group includes Lasso. LassolLars, Elastic Net, and XGBoost.

- Grouping is similar to that of the classification report metric.

- Fail to capture the price trend.

- Most predicted values hovering around zero.

Comparison between predicted and actual growth of BTCUSDT with XGB

—— Actual relative price
0.075 — Predicted relative price
0.050
0.025
€ 0000
-0.025
-0.050
-0.075
—0.100
¥ & P w2 N D> P DS
I\ N N N N N N [N
[. . | | S R o
o Q! o Q! o N o ISR
Time

Comparison between predicted and actual growth of BTCUSDT with ElasticNet

Growth

—— Actual relative price
—— Predicted relative price

0.075 1
0.050 1
0.025 1
0.000 1
—-0.025 4

-0.050 1

-0.075 1

-0.100 1

£ , b g ha : £
S S A ¥ NI AN 72

Actual vs Predecited Value Plot

- Group 2

- The model in this group includes Bayesian Ridge, Ridge, Huber, and CatBoost.

- Able to partially capture the price trend

- With some limitations
- Tendency to predict negative values aligning with speculation made when observing

classification reports

- Narrower ranges of predicted outputs
- Some delay in the prediction trend compared to the actual trend

73

Actual vs Preditced Value Plot

- Group 2

- Bayesian Ridge, Ridge, and Huber predict very similar trends, while CatBoost predict a slightly
different trend.

Comparison between predicted and actual growth of BTCUSDT with Bayesian Comparison between predicted and actual growth of BTCUSDT with CBR
—— Actual relative price —— Actual relative price
0.075 — Predicted relative price 0.075 — Predicted relative price
0.050 0.050
0.025 - 0.025 -
F £
¥ B0 £ 0000
-0.025 - —0.025 1
-0.050 - —0.050
-0.075 - =0.075 1
-0.100 1 =0.100
>) o <) A N “ C I N o o > A a “ C IS
Q S) N N N v v N g)
e ¥ ¥ ¥ AT Y AN A L/ 9’*0 & 9‘*0 & & & & 5
oF o o & o F I &9 o @ o g g g g ¥ gF
> © > S S S S S S S 3 S S 9 74
Time

Discussion

- When market conditions resemble those of the train dataset
- CatBoost emerges as the best-performing model.

- With current market conditions
- Huber emerges as the best-performing model.

- There is a performance degradation problem on most of the models.

- Class 1 precision falls below 50% for many models.
- Hard to gain profits with this precision.

- The Huber model is either more tolerant to performance degradation or
coincidentally performs well in the current market condition.

75

Discussion

- Overall model performance can be further improved.

- While the models are able to partially capture the underlying trend, they struggle to predict
accurate values.
- There is a tendency to predict values in a certain class.

- The selected model should be able to perform acceptably in the current
market condition.

- Class 1 precision is at 53%.
- The model can make accurate buying decisions when the model predicts positive outcomes.

76

Discussion

- Reasons that factors to the underperformance of the model are speculated as
follows

Using several currencies: Although the approach is taken to reduce the chance of overfitting, it
may come with trade off as each currency may have different natures.

Constantly changing of market conditions: This is evident by the degradation in performance
of the models.

Cryptocurrency is a highly voltaire market: Simple models may not be able to fully capture this
voltaire nature.

MSE might not be the most appropriate metric to be used for the optimation: Other metrics
should also be considered.

77

Conclusion

Assessment: System

system

- Weakness
Data Ingestion and Transformation can be indeed implemented on Mage.ai

Successfully implement a minimum viable product(mvp) of the E2E ML

However, also want to demonstrate serverless method

Use multiple cloud providers

Cannot fully integrate AWS features to DigitalOcean resources

Alias, allowing immediate model changing, requires the model to be downloaded every time

Consume a large amount of memory

Still be a problem of our APIs
Maybe because we still don'’t fully understand how BentoML works

- Can'’t properly optimized

79

Next Step: System

- Implement an automated model training pipeline and refine other components
to fully fulfill Microsoft's MLOps Level 2
- Find a method to improve the manual method to handle the historical data.

- Store timezone information along with datetime
May have a problem with daylight saving time

- A method of always downloading the model should be refined
- Grafana for model and API monitoring instead of using Streamlit

80

Assessment: Model

- There are room for further improvement as evident by the evaluation result
using the recent data

- The best performing model should outperform the market in the current
condition.

- In the lab environment, several models have successfully outperformed the
market.

81

Next Step: Model

- Several potential methods for improving model performance and robustness

are proposed as follows:
- Probabilistic forecasting models, including AR, ARMA, and ARIMA, can be alternative

solutions.
- Deep Neural Networks (DNNs) are renowned for their ability to capture highly complex

relationships.
- The problem can be framed as a binary classification problem, opening up other objective

functions for model optimization.

82

Q&A

