Machine Learning Bot for Financial Market

Submitted by

Wirachapong Suwanphibun Sivakorn Lerttripinyo Krittapasa Boontaveekul

Background

- Historical data in financial market is always collected.
- Collected historical prices can be used to predict a future trend.
- Machine Learning maybe able to predict by learning from data.
- Training Model is only a part of machine learning development project.

Background: Problem

- Reliable data source
- Experiment data, such as models, hyperparameters, should be recorded
- Deploying models to the real-world application
- Changing a model version
- Underlying infrastructures to implement a system

Background

- Objective
 - Design and implement a system going beyond the machine learning experiment.
 - Conduct an experiment on a price prediction model
 - Input
 - Output
 - Evaluation

Outline of this Presentation

- System
 - Design
 - Experiment
 - Result and Discussion
- Model Development
 - Design
 - Experiment
 - Result and Discussion
- Conclusion
 - Assessment
 - Next Steps

- Steps for implementing ML project
 - Data Extraction
 - Data Analysis
 - Data Preparation
 - Model Training
 - Model Evaluation
 - Model Serving
 - Model Monitoring

- Applying MLOps: Use Maturity Model to evaluate
 - No standardized model, but there are some proposals by Google and Microsoft
 - Google Model: Level of Automation
 - Microsoft Model: Technical Capability
- This project starts from Google's MLOps Level 0
 - All components are run manually.

- Then, the system is improved to achieve most features from Microsoft's MLOps Level 2
 - A data pipeline automatically gathers data
 - Experiment results are tracked
 - Both the training code and the resulting models are version-controlled
 - Implementing models are heavily dependent on data scientist expertise
 - Application code has unit tests
 - Basic integration tests exist for the model

- Required Components
 - Source Code Repository
 - Model Training Infrastructure
 - Model Registry
 - ML Metadata Stores
 - Model Serving Component
 - Model Monitoring Component
 - Price Prediction Model: Be covered in the next section
 - One or more features as an input
 - A single value as an output
 - Price itself
 - Difference in price

Infrastructure Management

- AWS and DigitalOcean
 - Free Tier for AWS
 - Free 200 USD for DigitalOcean
- Infrastructure as Code (IaC) to manage infrastructures' specification
 - Terraform
 - Backend on AWS S3 (State) and AWS DynamoDB (LockID)
 - Locking Management
 - State Management
 - Secret
 - Having additional infrastructures for managing the state is worthwhile, albeit troublesome.

```
resource "aws_security_group" "cap_aws_sg" -
 name = "postgresql-rds-sg"
 ingress {
   from port = 5432
   to port = 5432
   \# from port = 0
   # to port = 65535
   protocol = "TCP"
   cidr_blocks = ["0.0.0.0/0"]
 egress {
   from_port = 5432
   to port = 5432
   # from port = 0
   # to_port = 65535
   protocol = "TCP"
   cidr blocks = ["0.0.0.0/0"]
```

terraform apply -var-file="02-value.tfvars"

.tfvars is not stored in GitHub.

```
terraform > 🦖 03-main.tf
      provider "aws" {
  1
        region = "ap-southeast-1"
  5 > resource "aws security group" "cap aws sg" { ···
      resource "aws_db_instance" "seniorproj db" {
        identifier
                                = "maindb-seniorproj"
                                = "postgres"
        engine
        engine_version
                                = "14.10"
        instance_class
                                = "db.t3.micro"
        db name
                                = "seniorproj maindb"
                                = var.db username
        username
                                = var.db password
        password
        allocated storage
                                = 20
        storage type
                                = "gp2"
        publicly accessible
                                 = true
        backup retention period = 2
        skip final snapshot
                                = true
        vpc_security_group_ids = [aws_security_group.cap_aws_sg.id]
        tags = {
          Name = "seniorproj db"
```

11

Terraform State File

{} terraform	njson ×
C: > Users >	> super > AppData > Local > Temp > MicrosoftEdgeDownloads > be65621f-95c9-4b6a-bbf2-2c3ec07e
	"resources": [
76	{
81	"instances": [
82	{
84	"attributes": {
126	"license_model": "postgresql-license",
127	"listener_endpoint": [],
128	"maintenance_window": "tue:16:16-tue:16:46",
129	"manage_master_user_password": null,
130	"master_user_secret": [],
131	<pre>"master_user_secret_kms_key_id": null,</pre>
132	"max_allocated_storage": 0,
133	"monitoring_interval": 0,
134	"monitoring_role_arn": "",
135	"multi_az": false,
136	"nchar_character_set_name": "",
137	"network_type": "IPV4",
138	"option_group_name": "default:postgres-14",
139	"parameter_group_name": "default.postgres14",
140	"password": "df
141	"performance_insights_enabled": false,
142	"performance_insights_kms_key_id": "",
143	"performance_insights_retention_period": 0,
144	"port": 5432,

	orproj-terraform-state-s3 > global/ > s3/
s3/	다 Copy S3 URI
Objects Properties	
Objects (1) Info	
	Copy URL Download Open Z Delete Actions
Q Find objects by prefix	Show versions < 1 > 💿
Name	► Type ▼ Last modified ▼ Size ▼ Storage class ▼
terraform.tfstate	March 21, 2024, tfstate 14:44:18 30.3 KB Standard (UTC+07:00)
DynamoDB > Explore items > seniorproj-t	
Tables (3) ×	seniorproj-terraform-state-dynamodb O Autopreview View table details
Tables (3) × Any tag key ▼	seniorproj-terraform-state-dynamodb
Tables (3) × Any tag key ▼ Any tag value ▼	Seniorproj-terraform-state-dynamodb Autopreview View table details Scan or query items Scan Query Select a table or index Select attribute projection
Tables (3) × Any tag key ▼ Any tag value ▼ Q. Find tables by table name < 1 > ② ○ Senjargmi, terraform, state,	Seniorproj-terraform-state-dynamodb
Tables (3) × Any tag key ▼ Any tag value ▼ Q. Find tables by table name < 1 > @ O seniorproj-terraform-state- dynamodb	Seniorproj-terraform-state-dynamodb Autopreview View table details Scan or query items Scan Query Select a table or index Select attribute projection
Tables (3) × Any tag key ▼ Any tag value ▼ Q. Find tables by table name < 1 > ② ○ or eniorproj-terraform-state-	Seniorproj-terraform-state-dynamodb
Tables (3) × Any tag key ▼ Any tag value ▼ Q. Find tables by table name < 1 > @ O seniorproj-terraform-state- dynamodb	Seniorproj-terraform-state-dynamodb Scan or query items Select a table or index Filters
Tables (3) × Any tag key ▼ Any tag value ▼ Q. Find tables by table name < 1 > @ O seniorproj-terraform-state- dynamodb	seniorproj-terraform-state-dynamodb Scan or query items Select a tribute projection Select a table or index Filters Run Reset Items returned (1)

Error: Error acquiring the state lock

Error message: operation error DynamoDB: PutItem, https response error StatusCode: 400, RequestID:

FS2R7PP1VTQMKC2MFU4KD0MH1VVV4KQNS05AEMVJF66Q9ASUAAJG, ConditionalCheckFailedException: The conditional request failed Lock Info:

ID: aaa27854-b9ad-80ca-4c97-a1a3bbcffbfe

Path: seniorproj-terraform-state-s3/global/s3/terraform.tfstate

Operation: OperationTypeApply

Who: CAQ_DESKTOP\super@CaQ_Desktop

Version: 1.3.9

Created: 2024-05-08 14:25:17.2242123 +0000 UTC

Info:

Terraform acquires a state lock to protect the state from being written

Database Design

- Raw Data
 - Data from BinanceAPI
 - Relational DB
 - Apply constraint easily
 - PK: (time, currency)
 - All in one table
- Derived Data
 - One currency and one set of indicators has a dedicated table.
 - Store data after performing ETL from a data pipeline
 - Relational DB
 - Apply constraint easily
 - PK: (time, currency)
- PostgreSQL on AWS RDS

Database Design: Raw-data Database

Que	ry Query Hi	istory Data Output Messages	Notifications				
≡+	🕒 × 📋	× 🗊 🖏 🛓 📈					
	Currency [PK] text	time [PK] timestamp without time zone 🖍	open double precision 🖍	close double precision	low double precision 🖍	high double precision 🖍	volume double precision 🖍
1	BTCUSDT	2024-03-28 11:59:00	70637.99	70647.18	70616.41	70647.18	14.91807
2	BTCUSDT	2024-03-28 11:58:00	70673.05	70673.06	70626.33	70638	11.27007
3	BTCUSDT	2024-03-28 11:57:00	70702.01	70702.01	70673.05	70673.0 <mark>6</mark>	19.92578
4	BTCUSDT	2024-03-28 11:56:00	70747.01	70747.02	70700	70702	28.8656
5	BTCUSDT	2024-03-28 11:55:00	70682	70748	70682	70747.02	12.802
6	BTCUSDT	2024-03-28 11:54:00	70660	70692.06	70659.99	70682.01	22.7333
7	BTCUSDT	2024-03-28 11:53:00	70674.96	70681.99	70647.06	70660	14.35116
8	BTCUSDT	2024-03-28 11:52:00	70715.05	70715.05	70658.92	70674.96	16.10953
9	BTCUSDT	2024-03-28 11:51:00	70700	70727.93	70670.16	70715.04	28.70524
10	BTCUSDT	2024-03-28 11:50:00	70665.99	70720	70665.99	70700	28.57304
11	BTCUSDT	2024-03-28 11:49:00	70685.93	70685.94	70665.99	70666	14.85146
12	BTCUSDT	2024-03-28 11:48:00	70669 99	70701 1	70665 99	70685 94	19 95825

Database Design: Derived-data Database

crypto_ind_adausdt
 crypto_ind_ethusdt
 crypto_ind_one

	time [PK] timestamp without time zone	Currency [PK] text	close_minmax_scale , double precision	close double precision 🖍	ma25_99h double precision	ma7_25h double precision	ma7_25d double precision	ma25_99h_scale , double precision	ma7_25h_scale double precision	ma7_25d_scale double precision
1	2024-05-13 23:59:00	ETHUSDT	0.2227577896	2951.05	-2.862040404	6.6394285714	-122.3024571429	-0.000969838	0.002249853	-0.0414437089
2	2024-05-13 23:58:00	ETHUSDT	0.2212467244	2950.26	-3.1062505051	6.3083428571	-122.4149142857	-0.0010528735	0.0021382329	-0.0414929241
3	2024-05-13 23:57:00	ETHUSDT	0.2212467244	2950.26	-2.9413373737	6.0204571429	-122.7217142857	-0.0009969756	0.0020406531	-0.0415969149
4	2024-05-13 23:56:00	ETHUSDT	0.2192192192	2949.2	-2.8162666667	5.9367428571	-122.2489714286	-0.0009549256	0.0020130011	-0.0414515704
5	2024-05-13 23:55:00	ETHUSDT	0.2192000918	2949.19	-2.923830303	6.0408	-122.7245142857	-0.0009914011	0.0020482912	-0.0416129562
6	2024-05-13 23:54:00	ETHUSDT	0.2189705629	2949.07	-3.1964363636	5.8499428571	-122.0528571429	-0.0010838794	0.0019836568	-0.0413868973
7	2024-05-13 23:53:00	ETHUSDT	0.2176890266	2948.4	-3.1386909091	6.2338857143	-122.2893142857	-0.0010645404	0.0021143284	-0.0414765006
8	2024-05-13 23:52:00	ETHUSDT	0.2170004399	2948.04	-3.2212323232	6.0037142857	-122.7628	-0.0010926691	0.0020365105	-0.0416421758
9	2024-05-13 23:51:00	ETHUSDT	0.2175933896	2948.35	-3.5102626263	6.8582857143	-122.6173714286	-0.0011905855	0.0023261437	-0.041588472
10	2024 05 12 22:50:00	FTUUEDT	0.0160420577	2040.01	2.0400606060	7 624	100 6001 400571	0.0012267005	0.0025005425	0.0416176142

Data Ingestion - Design

- Historical Data
 - Insert manually
 - Explore and Clean Data first
 - One-time Operation + Large data size
 - Bulk Insertion is more efficient
 - Find Pattern
 - Create Automation for further new-generated data
- New-Generated Data
 - Insert automatically
 - AWS Lambda + AWS EventBridge Rule

Data Ingestion - Usage

- 1440 rows per day per currency (1440 minutes)
- Limitation
 - Limit 1000 rows per query for BinanceAPI
 - Solution: 2 queries per day
 - 0:00 and 12:00 UTC+0
 - 720 rows per query
 - Can increase frequency(e.g. 3 per day) to update data more real-time
 - No Available Libraries in Lambda's Python Runtime
 - Pack libraries as .zip and include as layers
 - Libraries must be downloaded in the same Python version as Lambda Runtime Env

AWS Lambda Limitation

- Tough to debug and test
 - Not suitable for implementing a complex operation.
- Tough to manage dependencies
 - Although having layers, this method is time-consuming and error-prone
 - Layer having size > 50 MB must be separated to two smaller layers (AWS Limitation)
- More appropriate tool (e.g. data pipeline tool) should be used

Data Transformation - Design

- Historical Data
 - Insert Manually
 - One-time Operation + Large amount of data
 - Not worthwhile to automate this
- New-generated Data
 - Automated ETL
 - Mage.ai (Data Pipeline Tool) is applied.
 - Apache Airflow requires at least 4GB RAM
 - Has less functions but more than enough for creating data pipelines

Data Transformation - Usage

- Extract data from raw-data database
- ETL is firstly implemented in Google Colab
 - Pandas is enough for approx 3M rows
 - Test with Historical Data
- Then, it is adapted as a data pipeline in Mage.ai
 - Directed Acyclic Graph (DAG)
 - Use the pipelines to transform new-generated data
- Schedules are configured to automatically trigger the pipeline to run

our_first_p	roject > Tr	iggers			Ø Launch Com	mand Center			Update v0.9.66	08:19 UT	TC 💠 Li
Sort runs l	by: Created a	t v									
Active	Туре	Pipeline	Logs	Name	Created at	Description	Frequency		Latest status		Tags
	schedule	etl_ethusdt	œ	halfday_trigger_1300			00 13 * * *	2024-05-11 13:00:00			
	schedule	etl_ethusdt	æ	halfday_trigger_0100	2024-04-07 09:57:42		00 01 * * *	2024-05-12 01:00:00			
	schedule	etl_adausdt	æ	halfday_trigger_1300	2024-03-03 06:13:56		00 13 * * *	2024-05-11 13:00:00			
	schedule	etl_adausdt	æ	halfday_trigger_0100	2024-03-03 06:13:15		00 01 * * *	2024-05-12 01:00:00			
	schedule	etl_btcusdt_ind1	e	halfday_trigger_0100		Trigger at 1:00 AM		2024-05-12 01:00:00			
	schedule	etl_btcusdt_ind1	œ	halfday_trigger_1300	2024-02-25 04:48:20	Trigger at 13:00	0 13 * * *	2024-05-11 13:00:00			

Training Management System

- Track experiments, Record relevant information, and Be a centralized source for distributing models
- MLFlow: Hosted on EC2
 - Metadata: PostgreSQL on AWS RDS
 - Artifact and Object: AWS S3 Bucket
 - Prevent data loss from the instance failure
 - IAM is required for accessing data in DB and S3
 - "aws configure" to enter access and secret access key
 - Attach "Roles" directly to EC2
- Training code is modified to utilize MLFlow to track the experiment.

Amazon	<u>S3</u> > <u>Buckets</u> > <u>mlf</u>	low-bucket-test-1012-seniorpr	<u>roj > 11/ > ccc(</u>	0d8aee3a54fe1bb002cdf	3506bd25/ > artifad	ts/ > model/	
mod	lel/						
Obje	cts Properties						
Obje	ects (5) Info						
C	🗇 Copy S3 URI	🗇 Copy URL	Download	Open 🖸 Delete	Actions 🔻	Create folder	🛧 Upload
	ts are the fundamental entiti ssions. Learn more 🗹	es stored in Amazon S3. You can us	e Amazon S3 inventory	to get a list of all objects	in your bucket. For others	to access your objects, y	ou'll need to explici
Q	Find objects by prefix						<
	Name	▲ Туре	∇	Last modified	⊽ Size	∇	Storage clas
	Conda.yaml	yaml		February 26, 2024, 14:0 (UTC+07:00)	5:05	239.0 B	Standard
	MLmodel	-		February 26, 2024, 14:0 (UTC+07:00)	5:06	515.0 B	Standard
	🖿 model.xgb	xgb		February 26, 2024, 14:0	5:06	11.5 KB	Standard

v 🕅 seniorproj	ర్జు public	c.experiment	s/mlflow_test/seniorproj_kimjongun@seniorp	5						
🗸 😑 Databases (4)			🗸 100 rows 👻 🔳 🕨 🗸 🖬 🕅 🗸	s s ≔× ?						
	Ouery Ou	uerv History	Data Output Messages Notifications							
> 💀 Casts										
> 🛠 Catalogs										
> 🛄 Event Triggers		riment_id 🔪	name	artifact_location	lifecycle_stage	creation_time	last_update_time			
> 😨 Extensions	[PK] ii	nteger 🖌	character varying (256)	character varying (256)	character varying (32)	bigint	bigint			
> 🛒 Foreign Data Wrappers			Default	s3://mlflow-bucket-test-1012-seniorproj/0	active	1698953685865	1698953685865			
> 🤤 Languages			nyc-taxi-experiment	s3://mlflow-bucket-test-1012-seniorproj/1		1705744737146	1705744737146			
> 💕 Publications			nyc-taxi-experiment-2	s3://mlflow-bucket-test-1012-seniorproj/2	active	1705746420871	1705746420871			
🗸 😵 Schemas (1)			test-crypto	s3://mlflow-bucket-test-1012-seniorproj/3	deleted	1706794347828	1706795074084			
🗸 🔷 public			Bitcoin_Price_Prediction_Minute	s3://mlflow-bucket-test-1012-seniorproj/4		1706795272632	1706795272632			
> 🐚 Aggregates			Bitcoin_Price_Prediction_GPU	s3://mlflow-bucket-test-1012-seniorproj/5	active	1706858019298	1706858019298			
> 🔒 Collations			XGBoost_Experiment	s3://mlflow-bucket-test-1012-seniorproj/6		1708164304511	1708164304511			
> 🏠 Domains			BTCUSDT_Price_Prediction_next24hrs_Regression_HN_ind	s3://mlflow-bucket-test-1012-seniorproj/11	active	1708929418074	1710228527692			
> D FTS Configurations			ADAUSDT_Price_Prediction_next24hrs_Regression_HN_ind	s3://mlflow-bucket-test-1012-seniorproj/12		1709450755762	1710228536053			
> IN FTS Dictionaries			BTCUSDT_Price_Prediction_Minute_Classification_MS	s3://mlflow-bucket-test-1012-seniorproj/13	active	1710046000517	1710228490074			
> Aa FTS Parsers			BTCUSDT_Price_Prediction_Minute_Regression_MS	s3://mlflow-bucket-test-1012-seniorproj/14		1710046721113	1710228504094			
> 🦲 FTS Templates	12		MainTradingBotXGBoostExperimentBigDataversion	s3://mlflow-bucket-test-1012-seniorproi/15	deleted	1711618248346	1711618597798			
> 📑 Foreign Tables	13		MainTradingBotXGBoostExperimentBigDataversion777	s3://mlflow-bucket-test-1012-seniorproi/18	active	1711666366148	1711666366148			
> 🕒 Functions	14		MainTradingBotLASSOBigDataversion	s3://mlflow-bucket-test-1012-seniorproi/19	active	1711666383089	1711666383089			
> 🥫 Materialized Views	15		MainTradingBotHuberRegressorBigDataversion	s3://mlflow-bucket-test-1012-seniorproi/20	active	1711666456956	1711666456956			
> 🍫 Operators	16		MainTradingBotBayesianRidgeBigDataversion	s3://mlflow-bucket-test-1012-seniorproi/21	active	1711666476760	1711666476760			
> C Procedures			MainTradingBotRidgeTUNEDBigDataversion	s3://mlflow-bucket-test-1012-seniorproj/22	active	1711666489014	1711666489014			
> 1.3 Sequences	18		MainTradingBotLASSOLARSTUNEDBigDataversion	s3://miflow-bucket-test-1012-seniorproj/22	active	1711666500628	1711666500628			
🗸 📑 Tables (16)	19		Main TradingBotELASTICNET BigDataversion	s3://miflow-bucket-test-1012-seniorproj/23	active	1711666512905	1711666512905			
> 🚞 alembic_version										
> 🧮 datasets	20		MainTradingBotCatBoostRegressorBigDataversion	s3://mlflow-bucket-test-1012-seniorproj/25	active	1711666633372	1711666633372			
> 🔤 experiment_tags			MainTradingBotTradingAdditionalRound2	s3://mlflow-bucket-test-1012-seniorproj/26	active	1711666833507	1711666833507			
> 🗮 experiments			MainTradingBotTradingAdditionalRound3	s3://mlflow-bucket-test-1012-seniorproj/27	active	1711667053413	1711667053413			
> 🧮 input_tags			MainTradingBotTradingAdditionalRound4	s3://mlflow-bucket-test-1012-seniorproj/28	active	1711667288986	1711667288986			
> 🧮 inputs			MainTradingBotTradingAdditionalRound5	s3://mlflow-bucket-test-1012-seniorproj/29	active	1711667548555	1711667548555			
> 🔤 latest_metrics	25		MainTradingBotTradingAdditionalRound6	s3://mlflow-bucket-test-1012-seniorproj/30	active	1711667768450	1711667768450			

Experiment Name

mlflow 2.10.2 Experiments	Models						C GitHub Docs
Experiments Search Experiments Default nyc-taxi-experiment Nyc-taxi-experiment-2 Bitcoin_Price_Prediction_Minute Bitcoin_Price_Prediction_GPU XGBoost_Experiment BitCUSDT_Price_Prediction_next24hr	• • •	BTCUSDT_Price_Prediction_n Experiment ID: 11 Artifact Location: s3://mlflor > Description Edit @ metrics.rmse < 1 and params.model = "tree @ Columns ~ Table Chart Evaluation Experimental	v-bucket-test-1012-seniorp]	Share
ADAUSDT_Price_Prediction_next24h BTCUSDT_Price_Prediction_Minute	1 î	Image: Second system Run Name Image: Second system BTCUSDT_1 Image: Second system gentle-jay-332 Image: Second system awesome-skunk-129	Created Fig. ② 27 days ago ③ 27 days ago ③ 27 days ago	Dataset - - -	Duration Source 20.2s	-	

Experiment Names

Run names

mlflow 2.102 Experiments Models			
BTCUSDT_Price_Prediction_next24hrs_Regression_HN_ind > BTCUSDT_1			
Run ID: ccc0d8aee3a54fe1bb002cdf3506bd25	Date: 2024-02-26 14:04:46	Source: 💷 colab_kernel_launcher.py	
Duration: 20.2s	Status: FINISHED		
 Description Edit 			
predict next 24 hrs using XGBoost			
> Datasets			
> Parameters (11)			
> Metrics (1)			
> Tags			
✓ Artifacts			
v ∎ model	Full Path::3://mlflow-bucket-test-1012-seniorproj/11/ccc0d8aee3a54	fe1bb002cdf3506bd25/artifacts/model 🧻	
i conda.yami i model.xqb	MLflow Model		
python_env.yami	The code snippets below demonstrate how to make predictions	using the logged model. This model is also registe	ered to the model registry.
🗟 requirements.txt	Model schema	Make Predictio	ne
	Input and output schema for your model. Learn more	Predict on a Spark Da	

BTCUSDT_1									
Run ID: ccc0d8aee3a54fe1bb002c	df3506bd25	Date: 2024-02-26 14:04:46							
Status: FINISHED	Status: FINISHED								
 Description Edit 	✓ Description Edit								
predict next 24 hrs using XGBoc	predict next 24 hrs using XGBoost								
> Datasets									
 Parameters (11) 									
Name	Value								
alpha	10								
 colsample_bytree	0.3								
currency	BTCUSDT								
end-datetime	2024-02-24 23:59:00								
feature	close_minmax_scale, ma7_2	5h_scale, ma25_99h_scale, ma7_25d_scale							
learning_rate	0.1								
max_depth									
n_estimators	10								
objective	reg:squarederror								
prediction	result (%up/down in next 2-	4 hrs)							

2017-09-12 11:59:00

start-datetime

Model Monitoring

- Continuously monitor ML model
- Jupyter Notebook is inconvenient for opening and sharing
- Webpage is better
 - Easier to share a line and open in any supported browser
 - Streamlit
 - Python-based: Easy to integrate with Matplotlib

crypto_ind_one Choose a start date 2024/01/01 Choose a start time 00:00 Choose an end date 2024/01/31 Choose an end time 23:45 Choose a model: CBR Enter

Visualization of Predicted Values Over Time

Start Time: 2024-01-01 00:00:00

Choose a table

CBR Enter

~

Visualization of Predicted Values Over Time

Start Time: 2024-01-01 00:00:00

End Time: 2024-01-31 23:45:00

Model results will be discussed later in the next section.

Model Building and Serving

- Bridging between the model experiment and the real-world application
- Building an API as an image and Deploying the image

↔ Code ⊙ Issues îî Pull requests ⊙ Ad	ctions 🖽 Projects 🕕 Security 🗠 Insi	ights 🕸 Settings				
 G ✓ Debug request body #15 					R	te-run all jobs
Ĝ Summary						
	MATT138 pushed -0- f70d64a main	Success	6m 41s	7m		
🥪 build_and_push						
Run details	cd.yaml					
Ö Usage						
5 Workflow file						
	Solution build_and_push 6m 29s					
						- +

Experiment Setup

- A software testing concept *is adapted* to test this system.
 - A unit test tests whether a particular system functions properly.
 - A component test will test whether an interaction between two systems work properly.
 - A system test is applied to verify that all systems can work together properly.
 - An integration test is skipped as our system has a small scale, and the borderline between the system and integration test is blurred
Experiment Setup: Infrastructure List

- AWS

- S3 Bucket
- Lambda (Python 3.9 as Runtime Environment) with AWS EventBridge Rules
- EC2: t2.micro, 1vCPU, RAM 1GB
- RDS PostgreSQL: t3.micro, 2vCPU, RAM 1 GB, gp2-20GiB Storage
- DynamoDB: Pay per Request
- DigitalOcean
 - Droplet: RAM 4GB, 2vCPU, 80GB Storage
 - App Platform: RAM 2GB, 1vCPU
 - Container Registry: 5GB Storage

Experimental Method: Unit Test

- IaC
 - The scripts shall provision defined infrastructures with a defined specification.
 - The state after running the script shall be updated and stored in S3 bucket.
- Data Ingestion
 - Raw-data database shall be created.
 - Historical data shall be able to be inserted manually to the raw-data database.
 - New data shall be automatically retrieved from an external API and stored in the raw-data database at the time specified by triggers.
 - No duplicated data shall exist in the raw-data database.

Experimental Method: Unit Test

- Data Transformation
 - Derived-data database shall be created.
 - Historical data shall be able to be derived and inserted into the derived-data database manually.
 - The data pipeline shall be triggered at a specified time.
 - The data pipeline shall successfully retrieve data from a defined data source, derive new indicators, and store them in the derived-data database.
- Training Management
 - The system shall be able to create several experiments.
 - Each experiment shall be able to contain several runs.
 - Each run shall contain logged data, such as metrics and hyperparameters, and model.
 - The AWS access key and secret access key shall be required to log the experiment result from the local to the system.

Experimental Method: Unit Test

- Model Monitoring
 - The dashboard hosted on the website shall be able to visualize the model metrics on the selected currency and date range.
 - For this test, the hard-coded model and dataset can be used.
- Model Building and Serving
 - After pushing the code into the main branch, the GitHub shall be automatically activated, and the new built image shall be automatically deployed through the API.

Experimental Method: Component Test

- **The data ingestion system** shall always ingest new data and insert into the raw-data database. **The data transformation system** shall be able to set the raw-data database as the data source, derive new indicators, and insert them into the derived-data database.

- The model building and serving system shall be able to retrieve the model from the training management system and use it for serving. If there is a change in the model version for serving, the new version shall be able to be deployed and applied without rebuilding the image.

Experimental Method: Component and System Test

- The model monitoring system shall be able to retrieve data from derived-data database and the model from the training management system. They shall be used to generate a metric and graph to show the model performance.

- System test
 - All components shall be able to work together properly.
 - The overall system shall be run and periodically check whether there is any error occur

Non-Functional Requirements Testing

- Operational Requirements
 - The system shall provide a result of at least 99% uptime.
 - The system databases shall have 99% uptime.
 - The system shall backup all databases to prevent data loss.
- Performance Requirements
 - The system shall store daily data every day.
 - The system shall provide a response within 5 seconds after making a request.
- Security and Privacy
 - The system shall scrape data from a legal source only.
 - The system shall allow only team members to access databases.

Test Result

Topic	Result (Pass/Partial Pass/Fail)
Infrastructure as Code	Pass
Data ingestion system	Pass
Data transformation system	Pass
Training management system	Pass
Model monitoring system	Pass
Model building and serving system	Pass

Table 2: Unit Test Result

Topic	Result (Pass/Partial Pass/Fail)
Data Ingestion + Data Transformation	Pass
Building and Serving + Management System	Pass
Model monitoring $+$ Management System	Pass

 Table 3: Component Test Result

CloudWatch > Log groups > /aws/lambda/extract_func									
/aws/lambda/extract_func Actions View in Logs Insights Start tailing Search log group									
► Log group details									
Log streams Tags Anomaly detection Metric filters	Log streams Tags Anomaly detection Metric filters Subscription filters Contributor Insights Data protection								
Log streams (11)	Delete Create log stream Search all log streams								
Q Filter log streams or try prefix search	Exact match Show expired () Info < 1 > ()								
Log stream									
2024/05/06/[\$LATEST]961bd54775654a8ba137f12704e418b0	2024-05-06 07:00:58 (UTC+07:00)								
2024/05/05/[\$LATEST]098eef322f794cfe9ef6e091647090cc	2024/05/05/[\$LATEST]098eef322f794cfe9ef6e091647090cc 2024-05-05 19:00:19 (UTC+07:00)								
2024/05/05/[\$LATEST]49413c01345c4f74b7ff9b39d93f9c48	2024/05/05/[\$LATEST]49413c01345c4f74b7ff9b39d93f9c48 2024-05-05 07:00:57 (UTC+07:00)								
2024/05/04/[\$LATEST]28c32035213d4f59a3b52c7eadb039db	2024-05-04 19:00:18 (UTC+07:00)								

Log	events	C Actions ▼ Start tailing Create metric filter							
You c	You can use the filter bar below to search for and match terms, phrases, or values in your log events. Learn more about filter patterns 🖸								
Q	Filter events - press enter to search	1m 1h 🗉 Local timezone 🔻 Display 🔻 🧿							
•	Timestamp	Message							
		No older events at this moment. <u>Retry</u>							
•	2024-05-06T07:00:50.075+07:00	<pre>INIT_START Runtime Version: python:3.9.v50 Runtime Version ARN: arn:aws:lambda:ap-southeast-1::runti</pre>							
•	2024-05-06T07:00:51.215+07:00	START RequestId: dfb12c7c-b0d8-4fc7-9a3e-8cb09e1d61cb Version: \$LATEST							
•	2024-05-06T07:00:58.129+07:00	END RequestId: dfb12c7c-b0d8-4fc7-9a3e-8cb09e1d61cb							
•	2024-05-06T07:00:58.129+07:00	REPORT RequestId: dfb12c7c-b0d8-4fc7-9a3e-8cb09e1d61cb Duration: 6914.40 ms Billed Duration: 6915 ms							
		No newer events at this moment. Auto retry paused. Resume							

л у	our_first_pr	oject >	Pipeli	ne runs			Zaunch Command Center			Update v0.9.66 04:43 UTC	# Live help 👔
	⊽ Filter										
z	Status	Logs		Block runs	Pipeline	Trigger	Pipeline tags	Execution date	Started at	Completed at	Execution time
43	✓ Done	(E)		8/8	etl_ethusdt	halfday_trigger_0	100	2024-05-06T01:00:00	2024-05-06T01:00:04	2024-05-06T01:01:21	00:01:17.17
	✓ Done	œ		9/9	etl_btcusdt_ind1	halfday_trigger_0	100	2024-05-06T01:00:00	2024-05-06T01:00:03	2024-05-06T01:01:13	00:01:09.84
	✓ Done	(E)		8/8	etl_adausdt	halfday_trigger_0	100	2024-05-06T01:00:00	2024-05-06T01:00:02	2024-05-06T01:01:11	00:01:09.35
\otimes	🗸 Done	æ	328	8/8	etl_ethusdt	halfday_trigger_1	300	2024-05-05T13:00:00	2024-05-05T13:00:09	2024-05-05T13:01:31	00:01:21.68
	✓ Done	æ		9/9	etl_btcusdt_ind1	halfday_trigger_1	300	2024-05-05T13:00:00	2024-05-05T13:00:09	2024-05-05T13:01:30	00:01:20.95
=	🗸 Done	æ	326	8/8	etl_adausdt	halfday_trigger_1	300	2024-05-05T13:00:00	2024-05-05T13:00:08	2024-05-05T13:01:28	00:01:20.33
60	✓ Done	æ		8/8	etl_ethusdt	halfday_trigger_0	100	2024-05-05T01:00:00	2024-05-05T01:00:08	2024-05-05T01:01:28	00:01:20.58
فخ	✓ Done	æ		9/9	etl_btcusdt_ind1	halfday_trigger_0	100	2024-05-05T01:00:00	2024-05-05T01:00:07	2024-05-05T01:01:27	00:01:19.60
>_	🗸 Done	æ	323	8/8	etl_adausdt	halfday_trigger_0	100	2024-05-05T01:00:00	2024-05-05T01:00:07	2024-05-05T01:01:16	00:01:09.68

Test Result

Topic	Result (Pass/Partial Pass/Fail)
Operational	Pass
Performance	Partial Pass
Security and Privacy	Pass

Table 4: Non-functional Requirements Test

- Some operations provide a response using more than five seconds.
 - The involvement of retrieving large amount of data.

- The system has delivered an acceptable result.
 - It contains the essential components for creating a simple end-to-end machine learning project that includes from the data system to serving system.
- IaC
 - Handle the unstandardized infrastructure problem.
 - Define infrastructures' specification including in this project and manages the provisioning work.
- Data Ingestion and Transformation
 - Handle the data quality and availability problem
 - clean, collect, transform, and centralize data
 - The most important ingredient for working with the machine learning model.

- Training Management System
 - Handle the experiment information recording and the model version distribution problem
 - Store several versions of model, along with metadata
 - Centralized source for serving the model
- Model Monitoring System
 - Handle the unobserved model degradation problem
 - Dashboard on the website to display graphs and metrics
- Model Building and Serving system
 - Handle the model deployment problem
 - API for serving models
 - Ex. in this project: API is used by the model monitoring system

- Each component can tackle various problems of the machine learning system development.
 - When connected together as a bot, it can work without the significant error.
- This bot can demonstrate the simple end-to-end machine learning system
 - It satisfies major functional and non-functional requirements
 - This project has effectively solved the identified issues
- Our project assessment will be covered later in the final section of this presentation.

Discussion: Design Requirement Revisited

- Required Components
 - Source Code Repository: GitHub
 - Model Training Infrastructure: Local Computer and Google Colab
 - Model Registry: MLFlow
 - ML Metadata Stores: PostgreSQL and S3
 - Model Serving Component: API by BentoML and DigitalOcean App Platform
 - Model Monitoring Component: Streamlit
 - Price Prediction Model
 - One or more features as an input
 - A single value as an output
 - Price itself
 - Difference in price

Model Development

Research

- Papers and Textbooks
- Other experienced teams

Summarize

 It will be a gigantic task to actually implement a model that outperform the market by focusing only on one specific token due to our model being OVERFIT.

Summarize

- Let's imagine that there is an actual trend that could really provide profits to users. In order to gain the highest amount of profit, users have to buy low and sell high according to those trends.
- However, there are so many competitors within the field who will be using statistical and quant approaches to detect the trends.
- Therefore, there are a significant chances that different players could end up detecting the same price trend. Once the trends are detected, some users will frontrun others to sell first. Resulting in the trend to always be changing.

Summarize

This means the trend of cryptocurrency prices might still be close to before.
 However, the change in trend could always be big enough to make the trained model perform worse than just simply holding tokens.

Our decision

- That's why we shifted our attention toward building models to gain the most gains from shifting between tokens instead of focusing only on one token.

 For example, allocating our fund in day1 to token A and shift our fund in the next day to other tokens once the token A is predicted to have its value reduced.

Preprocess

The indicators we experimented on include but are not limited to the followings:

- Close price (normalized)
- ma7h-ma25h
- ma25h-99h
- ma7d-ma25d
- ma25d-ma99d
- RSI
- MACD
- Every Hour of Historical Price (normalized)
 - Using data from the previous 1,2,3,4,..., 672 hours
- Bollinger Bands

Preprocess

Then, we plot out the feature significance of those indicators by training them with some of our models.

Preprocess

We summarize that the indicators that contribute the most to the model performances are the followings

- Close price (normalized)
- ma7h-ma25h
- ma25h-99h
- ma7d-ma25d
- Every 24 Hour Data of Historical Price (normalized)
 - Using data from the previous 1,25,49,73,..., 635, 672 hours

Model Selection

 We listed out some of the models that are convenient to be implemented.
 With more time provided, our team could experiment on more models and might receive better results

XGBoost
LassoLars
Bayesian Ridge
Ridge
Lasso
Elastic Net
Huber
CatBoost

Hypertuning models

- We adopted Optuna in hypertuning all our models.
- We set mean square error (MSE) as the objective function for training.
 - The fewer, the better

```
def objective_lars(trial):
    alpha = trial.suggest_float('alpha', 1e-6, 1.0)
    model = LassoLars(alpha=alpha)
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    return mean_squared_error(y_test, y_pred)
```

Model Training

- We trained our model by having the training process recorded on MLFlow.

```
with mlflow.start_run(experiment_id=experiment_id) as run:
    best_model = Ridge(**study.best_params)
    best_model.fit(X_train, y_train)
    y_pred = best_model.predict(X_test)
```

Model Evaluation

Model Evaluation

- Evaluation Datasets
 - 20% of Historical price data of 194 currencies
 - Recent price data of BTCUSDT spanning from January 1st to January 31st 2024
- Evaluation Metrics
 - Pool Value
 - Classification Report
 - Actual vs Predicted Value Plot

Pool Value

- Uniquely designed metric that we designed ourselves
- Capable of telling whether the model can outperform the market.
- The logic underlying it is provided as following:
 - We divide our money into 24 parts.
 - Every start of an hour, we will predict which tokens will perform the best on the next 24 hours and we will allocate our money to it.
 - Total pool value represent the percent gains across all the pools.

```
pools = np.array([1.0] * 24)
pool_index = 0
for value1,value2 in zip(filtered_y_pred_data,filtered_y_test_data):
    # print(index,value)
    if value1 > 0.001:
        pools[pool_index] *= (1+value2)
        pool_index = (pool_index + 1) % 24 # Increment the pool index and loop back after the 24th
# Sum the values of all pools
total pool value = np.sum(pools)/24
```

Pool Value

- Higher pool value indicates better performance
 - Pool value is not ROI due to how some data from the test cases are from the same time and we can't use our fund in different places at the same time.
- Pool value of a model surpasses that of the control groups(the pool value from just holding the tokens in all scenarios), indicating that some of our models are able to outperform the market.

Models	Pool Value
XGBoost	1.226×10^{49}
LassoLars	1.216×10^{-6}
Bayesian Ridge	1.661×10^{34}
Ridge	2.693×10^{36}
Lasso	1.516×10^{-6}
Elastic Net	1.516×10^{-6}
Huber	1.216×10^{30}
CatBoost	4.046×10^{125}
Control group	1.144×10^{-3}

Classification Report

- Evaluated using recent price data of BTCUSDT
- Positive values are classified as Class 1.
- Negative values are classified as Class 0.
- Class 1 precision indicates model accuracy in buying decisions.
- Class 1 recall indicates missed buying opportunities.
- Models can be grouped into 2 groups based on their performance.

Classification Report

- Group 1
 - Class 1 recall of 1 and class 0 recall of 0.
 - Indicates that the model only predict upward trends; therefore, these models should not be used.
 - The model in this group, including <u>Lasso, LassoLars, and Elastic Net</u>, displays similar performance.

C	lassi	ification r	eport for	ElasticNet	model	Cla	ssification r	eport for	Lasso model	
		precision	recall	f1-score	support		precision	recall	f1-score	support
	0	0.00	0.00	0.00	20458		0.00	0.00	0.00	20458
	1	0.53	1.00	0.69	22742		0.53	1.00	0.69	22742
accur	acy			0.53	43200	accurac	у		0.53	43200
macro	avg	0.26	0.50	0.34	43200	macro av	g 0.26	0.50	0.34	43200
weighted	avg	0.28	0.53	0.36	43200	weighted av	g 0.28	0.53	0.36	43200

Classification Report

- Group 2
 - The model in this group includes XGBoost, Bayesian Ridge, Ridge, Huber, and CatBoost.
 - Huber is the only model showing higher than 50% class 1 precision during the evaluation period.
 - Class 0 recall is significantly higher than the class 1 recall, which may implies the tendency to predict negative values for the model in this group.

Class	ification rep	Huber model		
	precision	recall	f1-score	support
0	0.47	0.70	0.57	20458
1	0.53	0.30	0.38	22742
accuracy			0.49	43200
macro avg	0.50	0.50	0.47	43200
weighted avg	0.50	0.49	0.47	43200

Actual vs Predicted Value Plot

- Evaluated using recent price data of BTCUSDT.
- The actual relative price and the predicted value are plotted in the same axis.
- Visualize if the model can capture the price trend.
- Requires human observation and judgement.
- Models can be grouped into 2 groups.

Actual vs Predecited Value Plot

- Group 1 _
 - The model in this group includes Lasso, LassoLars, Elastic Net, and XGBoost. _
 - Grouping is similar to that of the classification report metric. -
 - Fail to capture the price trend. -
 - Most predicted values hovering around zero. -

Comparison between predicted and actual growth of BTCUSDT with ElasticNet

Actual vs Predecited Value Plot

- Group 2
 - The model in this group includes <u>Bayesian Ridge, Ridge, Huber, and CatBoost</u>.
 - Able to partially capture the price trend
 - With some limitations
 - Tendency to predict negative values aligning with speculation made when observing classification reports
 - Narrower ranges of predicted outputs
 - Some delay in the prediction trend compared to the actual trend

Actual vs Preditced Value Plot

- Group 2
 - <u>Bayesian Ridge, Ridge, and Huber</u> predict very similar trends, while <u>CatBoost</u> predict a slightly different trend.

Comparison between predicted and actual growth of BTCUSDT with CBR

- When market conditions resemble those of the train dataset
 - CatBoost emerges as the best-performing model.
- With current market conditions
 - Huber emerges as the best-performing model.
- There is a performance degradation problem on most of the models.
 - Class 1 precision falls below 50% for many models.
 - Hard to gain profits with this precision.
- The Huber model is either more tolerant to performance degradation or coincidentally performs well in the current market condition.

- Overall model performance can be further improved.
 - While the models are able to partially capture the underlying trend, they struggle to predict accurate values.
 - There is a tendency to predict values in a certain class.
- The selected model should be able to perform acceptably in the current market condition.
 - Class 1 precision is at 53%.
 - The model can make accurate buying decisions when the model predicts positive outcomes.

- Reasons that factors to the underperformance of the model are speculated as follows
 - Using several currencies: Although the approach is taken to reduce the chance of overfitting, it may come with trade off as each currency may have different natures.
 - Constantly changing of market conditions: This is evident by the degradation in performance of the models.
 - Cryptocurrency is a highly voltaire market: Simple models may not be able to fully capture this voltaire nature.
 - MSE might not be the most appropriate metric to be used for the optimation: Other metrics should also be considered.

Conclusion

Assessment: System

- Successfully implement a minimum viable product(mvp) of the E2E ML system
- Weakness
 - Data Ingestion and Transformation can be indeed implemented on Mage.ai
 - However, also want to demonstrate serverless method
 - Use multiple cloud providers
 - Cannot fully integrate AWS features to DigitalOcean resources
 - Alias, allowing immediate model changing, requires the model to be downloaded every time.
 - Consume a large amount of memory
 - Still be a problem of our APIs
 - Maybe because we still don't fully understand how BentoML works
 - Can't properly optimized

Next Step: System

- Implement an automated model training pipeline and refine other components to fully fulfill Microsoft's MLOps Level 2
- Find a method to improve the manual method to handle the historical data.
- Store timezone information along with datetime
 - May have a problem with daylight saving time
- A method of always downloading the model should be refined
- Grafana for model and API monitoring instead of using Streamlit

Assessment: Model

- There are room for further improvement as evident by the evaluation result using the recent data
- The best performing model should outperform the market in the current condition.
- In the lab environment, several models have successfully outperformed the market.

Next Step: Model

- Several potential methods for improving model performance and robustness are proposed as follows:
 - Probabilistic forecasting models, including AR, ARMA, and ARIMA, can be alternative solutions.
 - Deep Neural Networks (DNNs) are renowned for their ability to capture highly complex relationships.
 - The problem can be framed as a binary classification problem, opening up other objective functions for model optimization.

Q & A